__all__: list[str] = [] import cv2 import cv2.typing import typing as _typing # Classes class FaceRecognizer(cv2.Algorithm): # Functions @_typing.overload def train(self, src: _typing.Sequence[cv2.typing.MatLike], labels: cv2.typing.MatLike) -> None: ... @_typing.overload def train(self, src: _typing.Sequence[cv2.UMat], labels: cv2.UMat) -> None: ... @_typing.overload def update(self, src: _typing.Sequence[cv2.typing.MatLike], labels: cv2.typing.MatLike) -> None: ... @_typing.overload def update(self, src: _typing.Sequence[cv2.UMat], labels: cv2.UMat) -> None: ... @_typing.overload def predict_label(self, src: cv2.typing.MatLike) -> int: ... @_typing.overload def predict_label(self, src: cv2.UMat) -> int: ... @_typing.overload def predict(self, src: cv2.typing.MatLike) -> tuple[int, float]: ... @_typing.overload def predict(self, src: cv2.UMat) -> tuple[int, float]: ... @_typing.overload def predict_collect(self, src: cv2.typing.MatLike, collector: PredictCollector) -> None: ... @_typing.overload def predict_collect(self, src: cv2.UMat, collector: PredictCollector) -> None: ... def write(self, filename: str) -> None: ... def read(self, filename: str) -> None: ... def setLabelInfo(self, label: int, strInfo: str) -> None: ... def getLabelInfo(self, label: int) -> str: ... def getLabelsByString(self, str: str) -> _typing.Sequence[int]: ... class BIF(cv2.Algorithm): # Functions def getNumBands(self) -> int: ... def getNumRotations(self) -> int: ... @_typing.overload def compute(self, image: cv2.typing.MatLike, features: cv2.typing.MatLike | None = ...) -> cv2.typing.MatLike: ... @_typing.overload def compute(self, image: cv2.UMat, features: cv2.UMat | None = ...) -> cv2.UMat: ... @classmethod def create(cls, num_bands: int = ..., num_rotations: int = ...) -> BIF: ... class FacemarkKazemi(Facemark): ... class Facemark(cv2.Algorithm): # Functions def loadModel(self, model: str) -> None: ... @_typing.overload def fit(self, image: cv2.typing.MatLike, faces: cv2.typing.MatLike, landmarks: _typing.Sequence[cv2.typing.MatLike] | None = ...) -> tuple[bool, _typing.Sequence[cv2.typing.MatLike]]: ... @_typing.overload def fit(self, image: cv2.UMat, faces: cv2.UMat, landmarks: _typing.Sequence[cv2.UMat] | None = ...) -> tuple[bool, _typing.Sequence[cv2.UMat]]: ... class FacemarkAAM(FacemarkTrain): ... class FacemarkTrain(Facemark): ... class FacemarkLBF(FacemarkTrain): ... class BasicFaceRecognizer(FaceRecognizer): # Functions def getNumComponents(self) -> int: ... def setNumComponents(self, val: int) -> None: ... def getThreshold(self) -> float: ... def setThreshold(self, val: float) -> None: ... def getProjections(self) -> _typing.Sequence[cv2.typing.MatLike]: ... def getLabels(self) -> cv2.typing.MatLike: ... def getEigenValues(self) -> cv2.typing.MatLike: ... def getEigenVectors(self) -> cv2.typing.MatLike: ... def getMean(self) -> cv2.typing.MatLike: ... class EigenFaceRecognizer(BasicFaceRecognizer): # Functions @classmethod def create(cls, num_components: int = ..., threshold: float = ...) -> EigenFaceRecognizer: ... class FisherFaceRecognizer(BasicFaceRecognizer): # Functions @classmethod def create(cls, num_components: int = ..., threshold: float = ...) -> FisherFaceRecognizer: ... class LBPHFaceRecognizer(FaceRecognizer): # Functions def getGridX(self) -> int: ... def setGridX(self, val: int) -> None: ... def getGridY(self) -> int: ... def setGridY(self, val: int) -> None: ... def getRadius(self) -> int: ... def setRadius(self, val: int) -> None: ... def getNeighbors(self) -> int: ... def setNeighbors(self, val: int) -> None: ... def getThreshold(self) -> float: ... def setThreshold(self, val: float) -> None: ... def getHistograms(self) -> _typing.Sequence[cv2.typing.MatLike]: ... def getLabels(self) -> cv2.typing.MatLike: ... @classmethod def create(cls, radius: int = ..., neighbors: int = ..., grid_x: int = ..., grid_y: int = ..., threshold: float = ...) -> LBPHFaceRecognizer: ... class MACE(cv2.Algorithm): # Functions def salt(self, passphrase: str) -> None: ... @_typing.overload def train(self, images: _typing.Sequence[cv2.typing.MatLike]) -> None: ... @_typing.overload def train(self, images: _typing.Sequence[cv2.UMat]) -> None: ... @_typing.overload def same(self, query: cv2.typing.MatLike) -> bool: ... @_typing.overload def same(self, query: cv2.UMat) -> bool: ... @classmethod def load(cls, filename: str, objname: str = ...) -> MACE: ... @classmethod def create(cls, IMGSIZE: int = ...) -> MACE: ... class PredictCollector: ... class StandardCollector(PredictCollector): # Functions def getMinLabel(self) -> int: ... def getMinDist(self) -> float: ... def getResults(self, sorted: bool = ...) -> _typing.Sequence[tuple[int, float]]: ... @classmethod def create(cls, threshold: float = ...) -> StandardCollector: ... # Functions def createFacemarkAAM() -> Facemark: ... def createFacemarkKazemi() -> Facemark: ... def createFacemarkLBF() -> Facemark: ... @_typing.overload def drawFacemarks(image: cv2.typing.MatLike, points: cv2.typing.MatLike, color: cv2.typing.Scalar = ...) -> cv2.typing.MatLike: ... @_typing.overload def drawFacemarks(image: cv2.UMat, points: cv2.UMat, color: cv2.typing.Scalar = ...) -> cv2.UMat: ... @_typing.overload def getFacesHAAR(image: cv2.typing.MatLike, face_cascade_name: str, faces: cv2.typing.MatLike | None = ...) -> tuple[bool, cv2.typing.MatLike]: ... @_typing.overload def getFacesHAAR(image: cv2.UMat, face_cascade_name: str, faces: cv2.UMat | None = ...) -> tuple[bool, cv2.UMat]: ... def loadDatasetList(imageList: str, annotationList: str, images: _typing.Sequence[str], annotations: _typing.Sequence[str]) -> bool: ... @_typing.overload def loadFacePoints(filename: str, points: cv2.typing.MatLike | None = ..., offset: float = ...) -> tuple[bool, cv2.typing.MatLike]: ... @_typing.overload def loadFacePoints(filename: str, points: cv2.UMat | None = ..., offset: float = ...) -> tuple[bool, cv2.UMat]: ... @_typing.overload def loadTrainingData(filename: str, images: _typing.Sequence[str], facePoints: cv2.typing.MatLike | None = ..., delim: str = ..., offset: float = ...) -> tuple[bool, cv2.typing.MatLike]: ... @_typing.overload def loadTrainingData(filename: str, images: _typing.Sequence[str], facePoints: cv2.UMat | None = ..., delim: str = ..., offset: float = ...) -> tuple[bool, cv2.UMat]: ... @_typing.overload def loadTrainingData(imageList: str, groundTruth: str, images: _typing.Sequence[str], facePoints: cv2.typing.MatLike | None = ..., offset: float = ...) -> tuple[bool, cv2.typing.MatLike]: ... @_typing.overload def loadTrainingData(imageList: str, groundTruth: str, images: _typing.Sequence[str], facePoints: cv2.UMat | None = ..., offset: float = ...) -> tuple[bool, cv2.UMat]: ... @_typing.overload def loadTrainingData(filename: _typing.Sequence[str], trainlandmarks: _typing.Sequence[_typing.Sequence[cv2.typing.Point2f]], trainimages: _typing.Sequence[str]) -> bool: ...