from __future__ import annotations import contextlib from io import BytesIO, StringIO from pathlib import Path from typing import TYPE_CHECKING from polars._utils.various import normalize_filepath from polars._utils.wrap import wrap_df from polars.datatypes import N_INFER_DEFAULT with contextlib.suppress(ImportError): # Module not available when building docs from polars._plr import PyDataFrame if TYPE_CHECKING: from io import IOBase from polars import DataFrame from polars._typing import SchemaDefinition def read_json( source: str | Path | IOBase | bytes, *, schema: SchemaDefinition | None = None, schema_overrides: SchemaDefinition | None = None, infer_schema_length: int | None = N_INFER_DEFAULT, ) -> DataFrame: """ Read into a DataFrame from a JSON file. Parameters ---------- source Path to a file or a file-like object (by "file-like object" we refer to objects that have a `read()` method, such as a file handler like the builtin `open` function, or a `BytesIO` instance). For file-like objects, the stream position may not be updated accordingly after reading. schema : Sequence of str, (str,DataType) pairs, or a {str:DataType,} dict The DataFrame schema may be declared in several ways: * As a dict of {name:type} pairs; if type is None, it will be auto-inferred. * As a list of column names; in this case types are automatically inferred. * As a list of (name,type) pairs; this is equivalent to the dictionary form. If you supply a list of column names that does not match the names in the underlying data, the names given here will overwrite them. The number of names given in the schema should match the underlying data dimensions. schema_overrides : dict, default None Support type specification or override of one or more columns; note that any dtypes inferred from the schema param will be overridden. infer_schema_length The maximum number of rows to scan for schema inference. If set to `None`, the full data may be scanned *(this is slow)*. See Also -------- read_ndjson Examples -------- >>> from io import StringIO >>> json_str = '[{"foo":1,"bar":6},{"foo":2,"bar":7},{"foo":3,"bar":8}]' >>> pl.read_json(StringIO(json_str)) shape: (3, 2) ┌─────┬─────┐ │ foo ┆ bar │ │ --- ┆ --- │ │ i64 ┆ i64 │ ╞═════╪═════╡ │ 1 ┆ 6 │ │ 2 ┆ 7 │ │ 3 ┆ 8 │ └─────┴─────┘ With the schema defined. >>> pl.read_json(StringIO(json_str), schema={"foo": pl.Int64, "bar": pl.Float64}) shape: (3, 2) ┌─────┬─────┐ │ foo ┆ bar │ │ --- ┆ --- │ │ i64 ┆ f64 │ ╞═════╪═════╡ │ 1 ┆ 6.0 │ │ 2 ┆ 7.0 │ │ 3 ┆ 8.0 │ └─────┴─────┘ """ if isinstance(source, StringIO): source = BytesIO(source.getvalue().encode()) elif isinstance(source, (str, Path)): source = normalize_filepath(source) pydf = PyDataFrame.read_json( source, infer_schema_length=infer_schema_length, schema=schema, schema_overrides=schema_overrides, ) return wrap_df(pydf)