# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license # Dogs dataset http://vision.stanford.edu/aditya86/ImageNetDogs/ by Stanford # Documentation: https://docs.ultralytics.com/datasets/pose/dog-pose/ # Example usage: yolo train data=dog-pose.yaml # parent # ├── ultralytics # └── datasets # └── dog-pose ← downloads here (337 MB) # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..] path: dog-pose # dataset root dir train: images/train # train images (relative to 'path') 6773 images val: images/val # val images (relative to 'path') 1703 images # Keypoints kpt_shape: [24, 3] # number of keypoints, number of dims (2 for x,y or 3 for x,y,visible) # Classes names: 0: dog # Keypoint names per class kpt_names: 0: - front_left_paw - front_left_knee - front_left_elbow - rear_left_paw - rear_left_knee - rear_left_elbow - front_right_paw - front_right_knee - front_right_elbow - rear_right_paw - rear_right_knee - rear_right_elbow - tail_start - tail_end - left_ear_base - right_ear_base - nose - chin - left_ear_tip - right_ear_tip - left_eye - right_eye - withers - throat # Download script/URL (optional) download: https://github.com/ultralytics/assets/releases/download/v0.0.0/dog-pose.zip