/* * SPDX-License-Identifier: Apache-2.0 */ #include #include #include "onnx/defs/function.h" #include "onnx/defs/schema.h" #include "onnx/defs/sequence/utils.h" namespace ONNX_NAMESPACE { static const char* SequenceEmpty_ver11_doc = R"DOC( Construct an empty tensor sequence, with given data type. )DOC"; ONNX_OPERATOR_SET_SCHEMA( SequenceEmpty, 11, OpSchema() .SetDoc(SequenceEmpty_ver11_doc) .Attr( "dtype", "(Optional) The data type of the tensors in the output sequence. " "The default type is 'float'.", AttributeProto::INT, OPTIONAL_VALUE) .Output(0, "output", "Empty sequence.", "S") .TypeConstraint("S", OpSchema::all_tensor_sequence_types(), "Constrain output types to any tensor type.") .TypeAndShapeInferenceFunction([](InferenceContext& ctx) { const auto* attr_proto = ctx.getAttribute("dtype"); auto elem_type = TensorProto::FLOAT; if (nullptr != attr_proto) { if (!attr_proto->has_i()) { fail_type_inference("Attribute dtype should be of integer type and specify a type."); } auto attr_value = attr_proto->i(); elem_type = static_cast(attr_value); } ctx.getOutputType(0)->mutable_sequence_type()->mutable_elem_type()->mutable_tensor_type()->set_elem_type( elem_type); })); static const char* SequenceConstruct_ver11_doc = R"DOC( Construct a tensor sequence containing 'inputs' tensors. All tensors in 'inputs' must have the same data type. )DOC"; ONNX_OPERATOR_SET_SCHEMA( SequenceConstruct, 11, OpSchema() .SetDoc(SequenceConstruct_ver11_doc) .Input(0, "inputs", "Tensors.", "T", OpSchema::Variadic) .Output(0, "output_sequence", "Sequence enclosing the input tensors.", "S") .TypeConstraint("T", OpSchema::all_tensor_types(), "Constrain input types to any tensor type.") .TypeConstraint("S", OpSchema::all_tensor_sequence_types(), "Constrain output types to any tensor type.") .TypeAndShapeInferenceFunction([](InferenceContext& ctx) { const size_t numInputs = ctx.getNumInputs(); if (numInputs < 1) { fail_type_inference("SequenceConstruct is expected to have at least 1 input."); } std::vector input_elem_types; input_elem_types.reserve(numInputs); for (size_t i = 0; i < numInputs; ++i) { auto input_type = ctx.getInputType(i); if (nullptr == input_type) { fail_type_inference("Input type for input at index ", i, " is null. Type info is expected."); } input_elem_types.emplace_back(input_type->tensor_type().elem_type()); } if (std::adjacent_find(input_elem_types.begin(), input_elem_types.end(), std::not_equal_to()) != input_elem_types.end()) { // not all input elem types are the same. fail_type_inference("Element type of inputs are expected to be the same."); } auto* output_tensor_type = ctx.getOutputType(0)->mutable_sequence_type()->mutable_elem_type()->mutable_tensor_type(); output_tensor_type->set_elem_type(static_cast(input_elem_types[0])); if (!hasNInputShapes(ctx, numInputs)) { return; } *(output_tensor_type->mutable_shape()) = ctx.getInputType(0)->tensor_type().shape(); for (size_t i = 1; i < numInputs; ++i) { const auto& input_shape = ctx.getInputType(i)->tensor_type().shape(); UnionShapeInfo(input_shape, *output_tensor_type); } })); static const char* SequenceInsert_ver11_doc = R"DOC( Outputs a tensor sequence that inserts 'tensor' into 'input_sequence' at 'position'. 'tensor' must have the same data type as 'input_sequence'. Accepted range for 'position' is in `[-n, n]`, where `n` is the number of tensors in 'input_sequence'. Negative value means counting positions from the back. 'position' is optional, by default it inserts 'tensor' to the back of 'input_sequence'. )DOC"; ONNX_OPERATOR_SET_SCHEMA( SequenceInsert, 11, OpSchema() .SetDoc(SequenceInsert_ver11_doc) .Input(0, "input_sequence", "Input sequence.", "S") .Input(1, "tensor", "Input tensor to be inserted into the input sequence.", "T") .Input( 2, "position", "Position in the sequence where the new tensor is inserted. " "It is optional and default is to insert to the back of the sequence. " "Negative value means counting positions from the back. " "Accepted range in `[-n, n]`, " "where `n` is the number of tensors in 'input_sequence'. " "It is an error if any of the index values are out of bounds. " "It must be a scalar(tensor of empty shape).", "I", OpSchema::Optional) .Output(0, "output_sequence", "Output sequence that contains the inserted tensor at given position.", "S") .TypeConstraint("T", OpSchema::all_tensor_types(), "Constrain to any tensor type.") .TypeConstraint("S", OpSchema::all_tensor_sequence_types(), "Constrain to any tensor type.") .TypeConstraint( "I", {"tensor(int32)", "tensor(int64)"}, "Constrain position to integral tensor. It must be a scalar(tensor of empty shape).") .TypeAndShapeInferenceFunction([](InferenceContext& ctx) { const auto input0_type = ctx.getInputType(0); const auto input1_type = ctx.getInputType(1); if (nullptr == input0_type || nullptr == input1_type) { fail_type_inference("Input Sequence and Tensor are expected to have type info. Current type is null."); } const auto seq_elem_type = input0_type->sequence_type().elem_type().tensor_type().elem_type(); const auto tensor_elem_type = input1_type->tensor_type().elem_type(); if (seq_elem_type != tensor_elem_type) { fail_type_inference( "Input Sequence and Tensor are expected to have the same elem type. Sequence=", seq_elem_type, " Tensor=", tensor_elem_type); } auto* output_tensor_type = ctx.getOutputType(0)->mutable_sequence_type()->mutable_elem_type()->mutable_tensor_type(); output_tensor_type->set_elem_type(seq_elem_type); if (!hasNInputShapes(ctx, 2)) { return; } *(output_tensor_type->mutable_shape()) = input0_type->sequence_type().elem_type().tensor_type().shape(); UnionShapeInfo(input1_type->tensor_type().shape(), *output_tensor_type); })); static const char* SequenceAt_ver11_doc = R"DOC( Outputs a tensor copy from the tensor at 'position' in 'input_sequence'. Accepted range for 'position' is in `[-n, n - 1]`, where `n` is the number of tensors in 'input_sequence'. Negative value means counting positions from the back. )DOC"; ONNX_OPERATOR_SET_SCHEMA( SequenceAt, 11, OpSchema() .SetDoc(SequenceAt_ver11_doc) .Input(0, "input_sequence", "Input sequence.", "S") .Input( 1, "position", "Position of the tensor in the sequence. " "Negative value means counting positions from the back. " "Accepted range in `[-n, n - 1]`, " "where `n` is the number of tensors in 'input_sequence'. " "It is an error if any of the index values are out of bounds. " "It must be a scalar(tensor of empty shape).", "I") .Output(0, "tensor", "Output tensor at the specified position in the input sequence.", "T") .TypeConstraint("S", OpSchema::all_tensor_sequence_types(), "Constrain to any tensor type.") .TypeConstraint("T", OpSchema::all_tensor_types(), "Constrain to any tensor type.") .TypeConstraint( "I", {"tensor(int32)", "tensor(int64)"}, "Constrain position to integral tensor. It must be a scalar(tensor of empty shape).") .TypeAndShapeInferenceFunction([](InferenceContext& ctx) { const auto input0_type = ctx.getInputType(0); if (nullptr == input0_type) { fail_type_inference("Input type for input at index 0 is null. Type info is expected."); } ctx.getOutputType(0)->CopyFrom(input0_type->sequence_type().elem_type()); })); static const char* SequenceErase_ver11_doc = R"DOC( Outputs a tensor sequence that removes the tensor at 'position' from 'input_sequence'. Accepted range for 'position' is in `[-n, n - 1]`, where `n` is the number of tensors in 'input_sequence'. Negative value means counting positions from the back. 'position' is optional, by default it erases the last tensor from 'input_sequence'. )DOC"; ONNX_OPERATOR_SET_SCHEMA( SequenceErase, 11, OpSchema() .SetDoc(SequenceErase_ver11_doc) .Input(0, "input_sequence", "Input sequence.", "S") .Input( 1, "position", "Position of the tensor in the sequence. " "Negative value means counting positions from the back. " "Accepted range in `[-n, n - 1]`, " "where `n` is the number of tensors in 'input_sequence'. " "It is an error if any of the index values are out of bounds. " "It must be a scalar(tensor of empty shape).", "I", OpSchema::Optional) .Output(0, "output_sequence", "Output sequence that has the tensor at the specified position removed.", "S") .TypeConstraint("S", OpSchema::all_tensor_sequence_types(), "Constrain to any tensor type.") .TypeConstraint( "I", {"tensor(int32)", "tensor(int64)"}, "Constrain position to integral tensor. It must be a scalar(tensor of empty shape).") .TypeAndShapeInferenceFunction([](InferenceContext& ctx) { const auto input0_type = ctx.getInputType(0); if (nullptr == input0_type) { fail_type_inference("Input type for input at index 0 is null. Type info is expected.") } ctx.getOutputType(0)->CopyFrom(*input0_type); })); static const char* SequenceLength_ver11_doc = R"DOC( Produces a scalar(tensor of empty shape) containing the number of tensors in 'input_sequence'. )DOC"; ONNX_OPERATOR_SET_SCHEMA( SequenceLength, 11, OpSchema() .SetDoc(SequenceLength_ver11_doc) .Input(0, "input_sequence", "Input sequence.", "S") .Output(0, "length", "Length of input sequence. It must be a scalar(tensor of empty shape).", "I") .TypeConstraint("S", OpSchema::all_tensor_sequence_types(), "Constrain to any tensor type.") .TypeConstraint( "I", {"tensor(int64)"}, "Constrain output to integral tensor. It must be a scalar(tensor of empty shape).") .TypeAndShapeInferenceFunction([](InferenceContext& ctx) { auto* output_tensor_type = ctx.getOutputType(0)->mutable_tensor_type(); output_tensor_type->set_elem_type(TensorProto::INT64); output_tensor_type->mutable_shape()->Clear(); })); // Updated operators that consume/produce sequence of tensors. ONNX_OPERATOR_SET_SCHEMA( SplitToSequence, 24, OpSchema().FillUsing( defs::sequence::utils::SplitToSequenceOpGenerator( OpSchema::all_tensor_types_ir4(), OpSchema::all_tensor_sequence_types_ir4()))); static const char* ConcatFromSequence_ver11_doc = R"DOC( Concatenate a sequence of tensors into a single tensor. All input tensors must have the same shape, except for the dimension size of the axis to concatenate on. By default 'new_axis' is 0, the behavior is similar to numpy.concatenate. When 'new_axis' is 1, the behavior is similar to numpy.stack. )DOC"; ONNX_OPERATOR_SET_SCHEMA( ConcatFromSequence, 11, OpSchema() .Attr( "axis", "Which axis to concat on. Accepted range in `[-r, r - 1]`, " "where `r` is the rank of input tensors. " "When `new_axis` is 1, accepted range is `[-r - 1, r]`. ", AttributeProto::INT) .Attr( "new_axis", "Insert and concatenate on a new axis or not, " "default 0 means do not insert new axis.", AttributeProto::INT, static_cast(0)) .SetDoc(ConcatFromSequence_ver11_doc) .Input(0, "input_sequence", "Sequence of tensors for concatenation", "S") .Output(0, "concat_result", "Concatenated tensor", "T") .TypeConstraint("S", OpSchema::all_tensor_sequence_types(), "Constrain input types to any tensor type.") .TypeConstraint("T", OpSchema::all_tensor_types(), "Constrain output types to any tensor type.") .TypeAndShapeInferenceFunction([](InferenceContext& ctx) { const auto input0_type = ctx.getInputType(0); if (nullptr == input0_type) { fail_type_inference("Input type for input at index 0 is null. Type info is expected.") } auto elem_type = input0_type->sequence_type().elem_type().tensor_type().elem_type(); ctx.getOutputType(0)->mutable_tensor_type()->set_elem_type(elem_type); if (!hasInputShape(ctx, 0)) { return; } auto axis_attr = ctx.getAttribute("axis"); if (!axis_attr) { fail_shape_inference("Required attribute axis is missing"); } int axis = static_cast(axis_attr->i()); int new_axis = 0; auto new_axis_attr = ctx.getAttribute("new_axis"); if (new_axis_attr) { new_axis = static_cast(new_axis_attr->i()); } const auto& input_shape = ctx.getInputType(0)->sequence_type().elem_type().tensor_type().shape(); auto rank = input_shape.dim_size(); if (1 != new_axis && 0 != new_axis) { fail_shape_inference("new_axis must be either 0 or 1"); } auto upper_bound = 1 == new_axis ? rank : rank - 1; auto lower_bound = 1 == new_axis ? -rank - 1 : -rank; if (axis < lower_bound || axis > upper_bound) { fail_shape_inference( "Invalid value of attribute 'axis'. Accepted range=[", lower_bound, ", ", upper_bound, "], Value=", axis); } if (axis < 0) { axis += (upper_bound + 1); } auto* output_shape = ctx.getOutputType(0)->mutable_tensor_type()->mutable_shape(); for (int i = 0; i <= upper_bound; ++i) { output_shape->add_dim(); if (i != axis) { output_shape->mutable_dim(i)->CopyFrom(input_shape.dim((i > axis && new_axis) ? i - 1 : i)); } } })); static const char* SequenceMap_ver17_doc = R"DOC( Applies a sub-graph to each sample in the input sequence(s). Inputs can be either tensors or sequences, with the exception of the first input which must be a sequence. The length of the first input sequence will determine the number of samples in the outputs. Any other sequence inputs should have the same number of samples. The number of inputs and outputs, should match the one of the subgraph. For each i-th element in the output, a sample will be extracted from the input sequence(s) at the i-th position and the sub-graph will be applied to it. The outputs will contain the outputs of the sub-graph for each sample, in the same order as in the input. This operator assumes that processing each sample is independent and could executed in parallel or in any order. Users cannot expect any specific ordering in which each subgraph is computed.)DOC"; static void SequenceMapInferenceFunction(InferenceContext& ctx) { auto num_inputs = ctx.getNumInputs(); assert(num_inputs > 0); auto num_outputs = ctx.getNumOutputs(); assert(num_outputs > 0); std::vector tmp_type_protos(num_inputs); std::vector subgraph_input_types; subgraph_input_types.reserve(num_inputs); for (size_t inputIndex = 0; inputIndex < num_inputs; inputIndex++) { auto input_type = ctx.getInputType(inputIndex); if (input_type == nullptr) { fail_type_inference("Input ", inputIndex, " expected to have type info"); } if (input_type->value_case() == TypeProto::kSequenceType) { tmp_type_protos[inputIndex].CopyFrom(input_type->sequence_type().elem_type()); subgraph_input_types.push_back(&tmp_type_protos[inputIndex]); } else { if (inputIndex == 0) fail_type_inference("Input ", inputIndex, " expected to be a sequence type"); subgraph_input_types.push_back(input_type); } } GraphInferencer* graphInferencer = ctx.getGraphAttributeInferencer("body"); if (!graphInferencer) fail_type_inference("Graph attribute inferencer for \"body\" not available"); std::vector input_data(num_inputs, nullptr); std::vector subgraph_output_types = graphInferencer->doInferencing(subgraph_input_types, input_data); // if empty(), assume inferencing was skipped if (!subgraph_output_types.empty()) { if (subgraph_output_types.size() != num_outputs) { fail_type_inference( "Graph attribute inferencing returned type information for ", subgraph_output_types.size(), " outputs. Expected ", num_outputs); } for (size_t outputIndex = 0; outputIndex < num_outputs; outputIndex++) { auto* subgraph_output_type = subgraph_output_types[outputIndex]; ctx.getOutputType(outputIndex)->mutable_sequence_type()->mutable_elem_type()->CopyFrom(*subgraph_output_type); } } } static bool BuildSequenceMapBodyFunc(const FunctionBodyBuildContext& ctx, const OpSchema& schema, FunctionProto& functionProto) { schema.BuildFunction(functionProto); // variadic input/outputs will be expanded functionProto.clear_input(); functionProto.clear_output(); auto body_attr = ctx.getAttribute("body"); if (!body_attr || !body_attr->has_g()) ONNX_THROW_EX(std::invalid_argument("Invalid ``body`` argument. Expected a graph")); const GraphProto& body = body_attr->g(); auto g_inputs = body.input(); int ninputs = g_inputs.size(); if (ninputs < 1) ONNX_THROW_EX(std::invalid_argument("Expected 1 or more inputs.")); auto g_outputs = body.output(); int noutputs = g_outputs.size(); if (noutputs < 1) ONNX_THROW_EX(std::invalid_argument("Expected 1 or more outputs.")); if (!ctx.hasInput(0)) ONNX_THROW_EX(std::invalid_argument(MakeString("Input 0 expected but not provided"))); const auto* first_input_type = ctx.getInputType(0); assert(first_input_type); if (!first_input_type->has_sequence_type()) ONNX_THROW_EX(std::invalid_argument("Expected a sequence type for input 0")); auto const& schema_inputs = schema.inputs(); auto const& input_0_name = schema_inputs[0].GetName(); auto const& input_1_name = schema_inputs[1].GetName(); // variadic input *functionProto.add_input() = input_0_name; for (int i = 1; i < ninputs; i++) { if (!ctx.hasInput(i)) ONNX_THROW_EX(std::invalid_argument(MakeString("Input ", i, " expected but not provided"))); *functionProto.add_input() = MakeString(input_1_name, "_", i); } auto const& schema_outputs = schema.outputs(); auto output_0_name = schema_outputs[0].GetName(); for (int i = 0; i < noutputs; i++) { if (!ctx.hasOutput(i)) ONNX_THROW_EX(std::invalid_argument(MakeString("Output ", i, " expected but not provided"))); *functionProto.add_output() = MakeString(output_0_name, "_", i); } // Loop body subgraph std::string loopbody_graph_name("SequenceMap_loop_body"); GraphProto loopbody_graph; loopbody_graph.set_name(loopbody_graph_name); { TypeProto int64_type; int64_type.mutable_tensor_type()->set_elem_type(TensorProto_DataType_INT64); int64_type.mutable_tensor_type()->mutable_shape()->Clear(); TypeProto bool_type; bool_type.mutable_tensor_type()->set_elem_type(TensorProto_DataType_BOOL); bool_type.mutable_tensor_type()->mutable_shape()->Clear(); ValueInfoProto iter_count; std::string iter_count_name = MakeString(loopbody_graph_name, "_itercount"); iter_count.set_name(iter_count_name); *iter_count.mutable_type() = int64_type; *loopbody_graph.add_input() = iter_count; ValueInfoProto cond_in; std::string cond_in_name = MakeString(loopbody_graph_name, "_cond_in"); cond_in.set_name(cond_in_name); *cond_in.mutable_type() = bool_type; *loopbody_graph.add_input() = cond_in; ValueInfoProto cond_out; std::string cond_out_name = MakeString(loopbody_graph_name, "_cond_out"); cond_out.set_name(cond_out_name); *cond_out.mutable_type() = bool_type; *loopbody_graph.add_output() = cond_out; NodeProto cond_identity; cond_identity.set_domain(ONNX_DOMAIN); cond_identity.set_op_type("Identity"); cond_identity.add_input(cond_in_name); cond_identity.add_output(cond_out_name); *loopbody_graph.add_node() = cond_identity; for (int inputIndex = 0; inputIndex < ninputs; inputIndex++) { const auto* input_type = ctx.getInputType(inputIndex); if (input_type && input_type->has_sequence_type()) { // If it's a sequence input, extract ``iter_count`` element NodeProto seq_at_node; seq_at_node.set_domain(ONNX_DOMAIN); seq_at_node.set_op_type("SequenceAt"); seq_at_node.add_input(functionProto.input(inputIndex)); seq_at_node.add_input(iter_count_name); seq_at_node.add_output(g_inputs.Get(inputIndex).name()); *loopbody_graph.add_node() = std::move(seq_at_node); } else { // If not a sequence, simply connect NodeProto identity; identity.set_domain(ONNX_DOMAIN); identity.set_op_type("Identity"); identity.add_input(functionProto.input(inputIndex)); identity.add_output(g_inputs.Get(inputIndex).name()); *loopbody_graph.add_node() = std::move(identity); } } for (const auto& item : body.node()) *loopbody_graph.add_node() = item; for (const auto& item : body.value_info()) *loopbody_graph.add_value_info() = item; for (const auto& item : body.initializer()) *loopbody_graph.add_initializer() = item; for (const auto& item : body.sparse_initializer()) *loopbody_graph.add_sparse_initializer() = item; for (int outputIndex = 0; outputIndex < noutputs; outputIndex++) { const auto& body_out_i = body.output(outputIndex); assert(body_out_i.type().has_tensor_type()); std::string prefix = MakeString(loopbody_graph_name, "_", body_out_i.name()); std::string loopbody_in_name = MakeString(prefix, "_in"); ValueInfoProto tmp; *tmp.mutable_type()->mutable_sequence_type()->mutable_elem_type()->mutable_tensor_type() = body_out_i.type().tensor_type(); tmp.set_name(loopbody_in_name); *loopbody_graph.add_input() = tmp; std::string loopbody_out_name = MakeString(prefix, "_out"); tmp.set_name(loopbody_out_name); *loopbody_graph.add_output() = tmp; NodeProto seq_insert_node; seq_insert_node.set_domain(ONNX_DOMAIN); seq_insert_node.set_op_type("SequenceInsert"); seq_insert_node.add_input(loopbody_in_name); seq_insert_node.add_input(body_out_i.name()); seq_insert_node.add_output(loopbody_out_name); *loopbody_graph.add_node() = seq_insert_node; } } std::vector nodes; // TODO: figure out a way to prevent name collisions? auto first_input_name = functionProto.input(0); std::string prefix = MakeString("SequenceMap_", first_input_name); std::string seqlen = MakeString(prefix, "_seqlen"); nodes.push_back({{seqlen}, "SequenceLength", {first_input_name}}); std::string cond_bool = MakeString(prefix, "_cond"); nodes.push_back(FunctionBodyHelper::Const(cond_bool, true)); std::vector loop_node_inputs = {seqlen, cond_bool}; std::vector loop_node_outputs; for (int outputIndex = 0; outputIndex < noutputs; outputIndex++) { auto output_name = functionProto.output(outputIndex); std::string out_prefix = MakeString("SequenceMap_", output_name); std::string seqempty_name = MakeString(out_prefix, "_seqempty"); int64_t dtype = g_outputs.Get(outputIndex).type().tensor_type().elem_type(); nodes.push_back({{seqempty_name}, "SequenceEmpty", {}, {MakeAttribute("dtype", dtype)}}); loop_node_inputs.emplace_back(std::move(seqempty_name)); loop_node_outputs.emplace_back(std::move(output_name)); } nodes.push_back({loop_node_outputs, "Loop", loop_node_inputs, {MakeAttribute("body", loopbody_graph)}}); auto func_nodes = FunctionBodyHelper::BuildNodes(nodes); for (const auto& node : func_nodes) { auto new_node = functionProto.add_node(); new_node->CopyFrom(node); } return true; } ONNX_OPERATOR_SET_SCHEMA( SequenceMap, 17, OpSchema() .SetDoc(SequenceMap_ver17_doc) .Attr( "body", "The graph to be run for each sample in the sequence(s). " "It should have as many inputs and outputs as inputs and " "outputs to the SequenceMap function.", AttributeProto::GRAPH) .Input(0, "input_sequence", "Input sequence.", "S") .Input(1, "additional_inputs", "Additional inputs to the graph", "V", OpSchema::Variadic, false, 0) .Output(0, "out_sequence", "Output sequence(s)", "S", OpSchema::Variadic, false) .TypeConstraint("S", OpSchema::all_tensor_sequence_types(), "Constrain input types to any sequence type.") .TypeConstraint( "V", []() { auto t = OpSchema::all_tensor_types(); auto s = OpSchema::all_tensor_sequence_types(); t.insert(t.end(), s.begin(), s.end()); return t; }(), "Constrain to any tensor or sequence type.") .SetContextDependentFunctionBodyBuilder(BuildSequenceMapBodyFunc) .TypeAndShapeInferenceFunction(SequenceMapInferenceFunction)); } // namespace ONNX_NAMESPACE