# Raspberry Pi Compatible Requirements # Optimized for ARM architecture and Python 3.9-3.11 # Core Framework streamlit>=1.28.0,<2.0.0 # Computer Vision opencv-python>=4.8.0,<5.0.0 opencv-contrib-python>=4.8.0,<5.0.0 # Additional OpenCV modules for face detection numpy>=1.24.0,<2.0.0 # Deep Learning Models ultralytics>=8.0.0,<9.0.0 torch>=2.0.0,<3.0.0 torchvision>=0.15.0,<1.0.0 transformers>=4.30.0,<5.0.0 onnxruntime>=1.15.0,<2.0.0 # Face & Pose Analysis - Raspberry Pi Compatible Options # # IMPORTANT: MediaPipe installation varies by Python version and architecture. # Install MediaPipe separately based on your setup: # # Option 1: Python 3.9-3.10 (try MediaPipe 0.10.8) # pip install mediapipe==0.10.8 # # Option 2: Python 3.11+ (try MediaPipe 1.0+) # pip install mediapipe>=1.0.0 # # Option 3: 32-bit Raspberry Pi OS # pip install mediapipe-rpi4 # # Option 4: If MediaPipe fails, the code will automatically use OpenCV fallback # (No MediaPipe installation needed - just install other requirements) # # Uncomment ONE of the following if you want to specify in requirements: # mediapipe>=0.10.0,<0.11.0 # For Python 3.9-3.10 # mediapipe>=1.0.0 # For Python 3.11+ # mediapipe-rpi4 # For 32-bit Raspberry Pi OS # External APIs roboflow>=1.1.0,<2.0.0 # Machine Learning scikit-learn>=1.3.0,<2.0.0 # Utilities pyyaml>=6.0,<7.0 # Additional dependencies for OpenCV face detection fallback # (OpenCV DNN face detector models will be downloaded automatically)