# Copyright 2024 The JAX Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import annotations from contextlib import contextmanager from functools import partial from typing import Sequence from jax._src import config from jax._src.lib import xla_client from jax._src import dispatch from jax._src import core from jax._src import linear_util as lu from jax._src.interpreters import ad, batching, mlir, partial_eval as pe from jax._src.tree_util import tree_flatten, tree_unflatten from jax._src.util import (safe_map, safe_zip, weakref_lru_cache, unzip2, split_list) from jax._src.api_util import debug_info, flatten_fun_nokwargs, flatten_axes from jax._src.lib.mlir.dialects import func as func_dialect from jax._src.lib.mlir import ir config_ext = xla_client._xla.config map, unsafe_map = safe_map, map zip, unsafe_zip = safe_zip, zip @contextmanager def extend_compute_type(c_type: str | None): if c_type is None: yield return prev = config.compute_on_context_manager.swap_local(c_type) try: if prev is not None and prev is not config_ext.unset and c_type != prev: raise NotImplementedError( 'Nesting `compute_on` with different compute types is not supported' f' yet. Current compute_on type: {prev}') yield c_type finally: config.compute_on_context_manager.set_local(prev) def _check_valid(c_type: str): if (c_type not in {'device_host', 'device', 'tpu_sparsecore'} and not c_type.startswith("gpu_stream:")): raise ValueError( f'Invalid compute type {c_type}. Current supported values ' 'are `device_host`, `device`, `tpu_sparsecore`, and `gpu_stream:#`.') @contextmanager def compute_on(compute_type: str): if not isinstance(compute_type, str): raise TypeError("`compute_on`'s compute_type argument must be a string.") _check_valid(compute_type) with extend_compute_type(compute_type): yield def compute_on2(f=None, *, compute_type, out_memory_spaces): kwargs = dict(compute_type=compute_type, out_memory_spaces=out_memory_spaces) if f is None: return lambda g: _compute_on2(g, **kwargs) return _compute_on2(f, **kwargs) def _compute_on2(f, *, compute_type, out_memory_spaces): def wrapped(*args): dbg = debug_info('compute_on', f, args, {}) args_flat, in_tree = tree_flatten(args) in_avals = tuple(core.shaped_abstractify(x) for x in args_flat) jaxpr, out_tree = _trace_to_jaxpr(f, in_avals, in_tree, dbg) out_memory_spaces_flat = flatten_axes( "compute_on out_memory_spaces", out_tree, out_memory_spaces) outs_flat = compute_on_p.bind( *args_flat, jaxpr=jaxpr, compute_type=compute_type, out_memory_spaces=tuple(out_memory_spaces_flat)) return tree_unflatten(out_tree, outs_flat) return wrapped @weakref_lru_cache def _trace_to_jaxpr(fun, in_avals, in_tree, dbg): f = lu.wrap_init(fun, debug_info=dbg) f, out_tree = flatten_fun_nokwargs(f, in_tree) jaxpr, _, consts = pe.trace_to_jaxpr_dynamic(f, in_avals) return core.ClosedJaxpr(jaxpr, consts), out_tree() compute_on_p = core.Primitive('compute_on') compute_on_p.multiple_results = True dispatch.simple_impl(compute_on_p) def _compute_on_abstract_eval(*in_avals, jaxpr, compute_type, out_memory_spaces): return [a.update(memory_space=s) for a, s in zip(jaxpr.out_avals, out_memory_spaces)] compute_on_p.def_abstract_eval(_compute_on_abstract_eval) def _compute_on_lowering(ctx, *args, jaxpr, compute_type, out_memory_spaces): const_args_and_avals = core.jaxpr_const_args(jaxpr.jaxpr) const_args, const_avals = unzip2(const_args_and_avals) const_arg_values = [ mlir.ir_constant(c, const_lowering=ctx.const_lowering, aval=aval) for c, aval in const_args_and_avals] in_avals = (*const_avals, *ctx.avals_in) func_op, output_types, effects = mlir.lower_called_computation( "compute_on", jaxpr, ctx.module_context, len(const_args), in_avals, ctx.avals_out, ctx.tokens_in) symbol_name = func_op.name.value flat_output_types = mlir.flatten_ir_types(output_types) tokens = [ctx.tokens_in.get(eff) for eff in effects] args = (*ctx.dim_var_values, *tokens, *const_arg_values, *args) call = func_dialect.CallOp( flat_output_types, ir.FlatSymbolRefAttr.get(symbol_name), mlir.flatten_ir_values(args)) if compute_type.startswith("gpu_stream:"): dict_attr = { "_xla_stream_annotation": ir.StringAttr.get(compute_type.split(":")[1]), "inlineable": ir.StringAttr.get("false"), } else: dict_attr = { "_xla_compute_type": ir.StringAttr.get(mlir.map_compute_type(compute_type)) } call.operation.attributes["mhlo.frontend_attributes"] = ir.DictAttr.get(dict_attr) out_nodes = mlir.unflatten_ir_values_like_types(call.results, output_types) tokens, out_nodes = split_list(out_nodes, [len(effects)]) tokens_out = ctx.tokens_in.update_tokens(mlir.TokenSet(zip(effects, tokens))) ctx.set_tokens_out(tokens_out) return [mlir.wrap_with_memory_kind(on, core.mem_space_to_kind(oms), out_aval) for on, out_aval, oms in zip(out_nodes, ctx.avals_out, out_memory_spaces)] mlir.register_lowering(compute_on_p, _compute_on_lowering) def _compute_on_batcher(axis_data, vals_in, dims_in, *, jaxpr, compute_type, out_memory_spaces): batched_jaxpr, dims_out = batching.batch_jaxpr2(jaxpr, axis_data, dims_in) outs = compute_on_p.bind(*vals_in, jaxpr=batched_jaxpr, compute_type=compute_type, out_memory_spaces=out_memory_spaces) return outs, dims_out batching.fancy_primitive_batchers[compute_on_p] = _compute_on_batcher def _compute_on_jvp(primals, tangents, *, jaxpr, compute_type, out_memory_spaces): nzs = [not isinstance(t, ad.Zero) for t in tangents] jaxpr_jvp, out_nzs = ad.jvp_jaxpr(jaxpr, nzs, False) nz_tangents = [t for t in tangents if not isinstance(t, ad.Zero)] spaces_jvp = (*out_memory_spaces, *[s for s, nz in zip(out_memory_spaces, out_nzs) if nz]) outs = compute_on_p.bind(*primals, *nz_tangents, jaxpr=jaxpr_jvp, compute_type=compute_type, out_memory_spaces=spaces_jvp) primals_out, nz_tangents_out = outs[:len(out_nzs)], outs[len(out_nzs):] nz_outs = iter(nz_tangents_out) tangents_out = [next(nz_outs) if nz else ad.Zero(aval.to_tangent_aval()) for aval, nz in zip(jaxpr.out_avals, out_nzs)] assert next(nz_outs, None) is None return primals_out, tangents_out ad.primitive_jvps[compute_on_p] = _compute_on_jvp def _compute_on_lin(nzs, *primals, jaxpr, compute_type, out_memory_spaces): jaxpr_jvp, out_nzs = ad.jvp_jaxpr(jaxpr, nzs, False) lin_outs = [False] * len(out_nzs) + [True] * sum(out_nzs) jaxpr_lin_, used_inputs = pe.dce_jaxpr(jaxpr_jvp.jaxpr, lin_outs, False) jaxpr_lin = pe.close_jaxpr(jaxpr_lin_) spaces_lin = tuple(s for s, nz in zip(out_memory_spaces, out_nzs) if nz) primals_out = compute_on_p.bind(*primals, jaxpr=jaxpr, compute_type=compute_type, out_memory_spaces=out_memory_spaces) tangent_avals_out = [a.to_tangent_aval() for a in jaxpr.out_avals] def compute_on_lin(primals, *tangents): nz_tangents = [t for t in tangents if not isinstance(t, ad.Zero)] inputs = [x for x, u in zip([*primals, *nz_tangents], used_inputs) if u] nz_outs = compute_on_p.bind(*inputs, jaxpr=jaxpr_lin, compute_type=compute_type, out_memory_spaces=spaces_lin) nz_outs_ = iter(nz_outs) outs = [next(nz_outs_) if nz else ad.Zero(a) for nz, a in zip(out_nzs, tangent_avals_out)] assert next(nz_outs_, None) is None return outs return primals_out, out_nzs, primals, compute_on_lin ad.primitive_linearizations[compute_on_p] = _compute_on_lin def _compute_on_partial_eval_custom_params_updater( unks_in: Sequence[bool], inst_in: Sequence[bool], kept_outs_known: Sequence[bool], kept_outs_staged: Sequence[bool], num_res_out: int, num_res_in: int, params_known, params_staged): # prune inputs to jaxpr_known according to unks_in _, out_memory_spaces_known = pe.partition_list( kept_outs_known, params_known['out_memory_spaces']) new_params_known = dict( params_known, out_memory_spaces=(*out_memory_spaces_known, *[core.MemorySpace.Device] * num_res_out), ) assert (len(new_params_known['out_memory_spaces']) == len(params_known['jaxpr'].out_avals)) # added num_res new inputs to jaxpr_staged, and pruning according to inst_in _, out_memory_spaces_staged = pe.partition_list( kept_outs_staged, params_staged['out_memory_spaces']) new_params_staged = dict( params_staged, out_memory_spaces=tuple(out_memory_spaces_staged), ) assert (len(new_params_staged['out_memory_spaces']) == len(params_staged['jaxpr'].out_avals)) return new_params_known, new_params_staged pe.partial_eval_jaxpr_custom_rules[compute_on_p] = \ partial(pe.closed_call_partial_eval_custom_rule, 'jaxpr', _compute_on_partial_eval_custom_params_updater) @weakref_lru_cache def _transpose_jaxpr(jaxpr, in_avals, in_tree): cell = lambda: None def transposed(*in_flat): primals_in, cts_in = tree_unflatten(in_tree, in_flat) out = ad.backward_pass(jaxpr.jaxpr, False, jaxpr.consts, primals_in, cts_in) out = [ct if not isinstance(ct, ad.Zero) else None for ct in out] cts_out, cell.out_tree = tree_flatten(out) # type: ignore return cts_out dbg = jaxpr.jaxpr.debug_info.with_unknown_names() trans_jaxpr, _, consts = pe.trace_to_jaxpr_dynamic( lu.wrap_init(transposed, debug_info=dbg), in_avals) return core.ClosedJaxpr(trans_jaxpr, consts), cell.out_tree # type: ignore def _compute_on_transpose(cts_in, *primals_in, jaxpr, compute_type, out_memory_spaces): in_flat, in_tree = tree_flatten((primals_in, cts_in)) in_avals = tuple(core.typeof(x) for x in in_flat) trans_jaxpr, out_tree = _transpose_jaxpr(jaxpr, in_avals, in_tree) in_spaces = [x.aval.memory_space if isinstance(x, ad.UndefinedPrimal) else core.typeof(x).memory_space for x in primals_in] cts_out_ = tree_unflatten(out_tree, trans_jaxpr.out_avals) trans_spaces = tuple(s for x, s in zip(cts_out_, in_spaces) if x) cts_out = compute_on_p.bind(*in_flat, jaxpr=trans_jaxpr, compute_type=compute_type, out_memory_spaces=trans_spaces) return tree_unflatten(out_tree, cts_out) ad.primitive_transposes[compute_on_p] = _compute_on_transpose