# Copyright 2018 The JAX Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Primitive dispatch and jit dispatch. from __future__ import annotations import atexit from collections.abc import Sequence import dataclasses from functools import partial import itertools import logging import threading import time from typing import Any from jax._src import api from jax._src import array from jax._src import basearray from jax._src import config from jax._src import core from jax._src import dtypes from jax._src import literals from jax._src import pjit from jax._src import traceback_util from jax._src import util from jax._src import xla_bridge from jax._src.abstract_arrays import array_types from jax._src.interpreters import ad from jax._src.interpreters import batching from jax._src.interpreters import mlir from jax._src.interpreters import partial_eval from jax._src.interpreters import pxla from jax._src.api_util import InternalFloatingPointError from jax._src.layout import Layout, Format from jax._src.lib import xla_client as xc from jax._src.mesh import AbstractMesh, Mesh from jax._src.monitoring import record_scalar, record_event_duration_secs, record_event_time_span from jax._src.partition_spec import PartitionSpec from jax._src.sharding import Sharding from jax._src.sharding_impls import ( NamedSharding, SingleDeviceSharding, GSPMDSharding, is_single_device_sharding) from jax._src.stages import SourceInfo import numpy as np JAXPR_TRACE_EVENT = "/jax/core/compile/jaxpr_trace_duration" JAXPR_TO_MLIR_MODULE_EVENT = "/jax/core/compile/jaxpr_to_mlir_module_duration" BACKEND_COMPILE_EVENT = "/jax/core/compile/backend_compile_duration" traceback_util.register_exclusion(__file__) xe = xc._xla Backend = xe.Client Device = xc.Device ArrayCopySemantics = xc.ArrayCopySemantics CompileOptions = xc.CompileOptions map, unsafe_map = util.safe_map, map zip, unsafe_zip = util.safe_zip, zip logger = logging.getLogger(__name__) # This flag is set on exit; no logging should be attempted _on_exit = False ### op-by-op execution def apply_primitive(prim, *args, **params): """Impl rule that compiles and runs a single primitive 'prim' using XLA.""" fun = xla_primitive_callable(prim, **params) # TODO(yashkatariya): Investigate adding is_primitive to jit and never # triggering the disable jit path instead of messing around with it here. prev = config.disable_jit.swap_local(False) try: outs = fun(*args) finally: config.disable_jit.set_local(prev) return outs # TODO(necula): this cache will contain strong references to all # Jaxprs in `params` (for higher-order primitives). # This is not immediately fixable by using # util.multi_weakref_lru_cache, because the `params` (including the Jaxpr) # are closed over in the `prim_fun` lambda. Leaving this fix for a later PR. @util.cache() def xla_primitive_callable(prim: core.Primitive, **params): util.test_event("xla_primitive_callable_cache_miss") def prim_fun(*args): with config.eager_constant_folding(False): return prim.bind(*args, **params) prim_fun.__name__ = prim.name prim_fun.__qualname__ = prim.name prim_fun._apply_primitive = True return api.jit(prim_fun) def simple_impl(prim): prim.def_impl(partial(apply_primitive, prim)) RuntimeToken = Any class RuntimeTokenSet(threading.local): """See docstring for effects.py module for the calling convention for tokens.""" # For each ordered effect, the token returned by the last dispatched # computation, sharded over the devices in that computation. current_tokens: dict[core.Effect, core.Token] # For each device, the runtime token returned by the last dispatched # computation on that device. output_runtime_tokens: dict[Device, RuntimeToken] def __init__(self): self.current_tokens = {} self.output_runtime_tokens = {} def get_token_input( self, eff: core.Effect, devices: list[Device] ) -> core.Token: tok = self.current_tokens.get(eff, np.zeros(0, np.bool_)) if isinstance(tok, core.Token): # The order of devices may change, so we need to reshard if necessary. # TODO(yueshengys): This might still be buggy in a multi-process SPMD # scenario. Revise the logic later. A distributed shutdown barrier inside # the XLA program may be needed. return api.device_put( tok, NamedSharding(Mesh(devices, 'x'), PartitionSpec('x'))) # We only use replicated sharding for the first time when the token for the # order effect hasn't been created. s = GSPMDSharding.get_replicated(devices) sharded_tok = core.Token( pxla.shard_args( [s], [None], [xc.ArrayCopySemantics.REUSE_INPUT], [tok] )[0] ) self.current_tokens[eff] = sharded_tok return sharded_tok def set_token_result(self, eff: core.Effect, token: core.Token): self.current_tokens[eff] = token def set_output_runtime_token(self, device: Device, token: RuntimeToken): # We're free to clobber the previous output token because on each # device we have a total ordering of computations. Only the token # from the latest computation matters. self.output_runtime_tokens[device] = token def clear(self): self.current_tokens = {} self.output_runtime_tokens = {} def block_until_ready(self): for token in self.current_tokens.values(): token.block_until_ready() for token in self.output_runtime_tokens.values(): token.block_until_ready() self.clear() runtime_tokens: RuntimeTokenSet = RuntimeTokenSet() @atexit.register def wait_for_tokens(): runtime_tokens.block_until_ready() class LogElapsedTimeContextManager: __slots__ = ['fmt', 'fun_name', 'event', 'start_time'] def __init__(self, fmt: str, fun_name: str, event: str | None = None): self.fmt = fmt self.fun_name = fun_name self.event = event def __enter__(self): self.start_time = time.time() if self.event is not None: record_scalar( self.event, self.start_time, fun_name=self.fun_name ) def __exit__(self, exc_type, exc_value, traceback): if _on_exit: return end_time = time.time() elapsed_time = end_time - self.start_time log_priority = logging.WARNING if config.log_compiles.value else logging.DEBUG if logger.isEnabledFor(log_priority): logger.log(log_priority, self.fmt.format( fun_name=self.fun_name, elapsed_time=elapsed_time)) if self.event is not None: record_event_duration_secs( self.event, elapsed_time, fun_name=self.fun_name ) record_event_time_span( self.event, self.start_time, end_time, fun_name=self.fun_name ) log_elapsed_time = LogElapsedTimeContextManager def should_tuple_args(num_args: int, platform: str) -> bool: # CPU and GPU do not need tuples as they use host-side data structures that # do not have small bounds. # TPU only needs a tuple for very long lists if platform == "tpu": return num_args > 2000 else: return False def jaxpr_has_primitive(jaxpr: core.Jaxpr, prim_name: str) -> bool: """Whether there is a primitive given by user anywhere inside a Jaxpr.""" for eqn in jaxpr.eqns: if prim_name in eqn.primitive.name: return True for subjaxpr in core.subjaxprs(jaxpr): if jaxpr_has_primitive(subjaxpr, prim_name): return True return False # Use this registry with caution. It will void the guarantee that lowering to # stablehlo is oblivious of physical devices. prim_requires_devices_during_lowering: set[core.Primitive] = set() @util.weakref_lru_cache def jaxpr_has_prim_requiring_devices(jaxpr: core.Jaxpr) -> bool: for eqn in jaxpr.eqns: if eqn.primitive in prim_requires_devices_during_lowering: return True for subjaxpr in core.subjaxprs(jaxpr): if jaxpr_has_prim_requiring_devices(subjaxpr): return True return False @util.weakref_lru_cache def get_intermediate_shardings( jaxpr: core.Jaxpr) -> Sequence[tuple[Sharding, SourceInfo]]: from jax._src import shard_map # pytype: disable=import-error out = [] for eqn in jaxpr.eqns: if eqn.primitive is pjit.sharding_constraint_p: s = eqn.params['sharding'] if isinstance(s, NamedSharding) and isinstance(s.mesh, AbstractMesh): continue source_info = SourceInfo(eqn.source_info, eqn.primitive.name) out.append((s, source_info)) elif eqn.primitive is pjit.jit_p: source_info = SourceInfo(eqn.source_info, eqn.primitive.name) out.extend((i, source_info) for i in eqn.params['in_shardings']) out.extend((o, source_info) for o in eqn.params['out_shardings']) elif eqn.primitive is shard_map.shard_map_p: mesh = eqn.params['mesh'] if isinstance(mesh, AbstractMesh): continue source_info = SourceInfo(eqn.source_info, eqn.primitive.name) out.extend((NamedSharding(mesh, spec), source_info) for spec in [*eqn.params['in_specs'], *eqn.params['out_specs']]) elif eqn.primitive is device_put_p: source_info = SourceInfo(eqn.source_info, eqn.primitive.name) out.extend((s, source_info) for s in eqn.params['devices'] if isinstance(s, Sharding) and s.memory_kind is not None) for subjaxpr in core.subjaxprs(jaxpr): out.extend(get_intermediate_shardings(subjaxpr)) return out def jaxpr_has_bints(jaxpr: core.Jaxpr) -> bool: return (any(type(v.aval.dtype) is core.bint for v in jaxpr.invars if isinstance(v.aval, core.UnshapedArray)) or any(_is_bint_axis_size(d) for j in itertools.chain([jaxpr], core.subjaxprs(jaxpr)) for e in j.eqns for v in e.outvars if isinstance(v.aval, core.DShapedArray) for d in v.aval.shape)) def _is_bint_axis_size(d: core.AxisSize) -> bool: if isinstance(d, core.DArray): assert not d.shape return type(d.dtype) is core.bint elif isinstance(d, core.Var): return (isinstance(d.aval, core.DShapedArray) and type(d.aval.dtype) is core.bint) return False def check_arg(arg: Any): if not (isinstance(arg, core.Tracer) or core.valid_jaxtype(arg)): raise TypeError(f"Argument '{arg}' of type {type(arg)} is not a valid " "JAX type.") def needs_check_special() -> bool: return config.debug_infs.value or config.debug_nans.value def check_special(name: str, bufs: Sequence[basearray.Array]) -> None: if needs_check_special(): for buf in bufs: _check_special(name, buf.dtype, buf) def _check_special(name: str, dtype: np.dtype, buf: basearray.Array) -> None: if dtypes.issubdtype(dtype, np.inexact): if config.debug_nans.value and np.any(np.isnan(np.asarray(buf))): raise InternalFloatingPointError(name, "nan") if config.debug_infs.value and np.any(np.isinf(np.asarray(buf))): raise InternalFloatingPointError(name, "inf") def _identity_fn(x): return x def _different_device_order_reshard( x: array.ArrayImpl, target_sharding: NamedSharding, copy: ArrayCopySemantics ) -> array.ArrayImpl: x._check_if_deleted() inp_sharding = x.sharding assert isinstance(inp_sharding, NamedSharding) donate_argnums = 0 if copy == ArrayCopySemantics.DONATE_INPUT else None if inp_sharding._device_assignment == target_sharding._device_assignment: return api.jit(_identity_fn, out_shardings=target_sharding, donate_argnums=donate_argnums)(x) if inp_sharding.is_fully_replicated: permute_order = None else: permute_order = np.vectorize(target_sharding._device_assignment.index, otypes=[int])(inp_sharding._device_assignment) new_mesh = Mesh( target_sharding.mesh.devices.reshape(inp_sharding.mesh.axis_sizes), inp_sharding.mesh.axis_names) new_s = NamedSharding( new_mesh, inp_sharding.spec, memory_kind=target_sharding.memory_kind, _logical_device_ids=(None if permute_order is None else tuple(permute_order.tolist()))) new_x = xc.reorder_shards(x, new_s, ArrayCopySemantics.REUSE_INPUT) # type: ignore return api.jit(_identity_fn, out_shardings=target_sharding, donate_argnums=donate_argnums)(new_x) @util.cache(max_size=2048, trace_context_in_key=False) def _is_supported_cross_host_transfer(ndim, src_sharding, dst_sharding): """Returns True if src->dst is a supported cross-host transfer.""" if (src_sharding._internal_device_list.device_kind != dst_sharding._internal_device_list.device_kind): return False if (src_sharding._to_xla_hlo_sharding(ndim) != dst_sharding._to_xla_hlo_sharding(ndim)): return False # This check excludes the case where the source and destination shardings # have the same process index sets but there are shards that require # cross-host transfers. This case is supportable but expensive to check for. different_process_inds = ( src_sharding._internal_device_list.process_indices != dst_sharding._internal_device_list.process_indices) backend = xla_bridge.get_backend() # If a cross-host device transfer is requested but the backend does not # support it, then the user must set the flags to enable DCN-based transfers. if (different_process_inds and not getattr(backend, 'supports_cross_host_transfers', False) and not xla_bridge.CROSS_HOST_TRANSFER_SOCKET_ADDRESS.value): raise ValueError( f"The backend ({backend.platform}, {backend.platform_version}) does " "not support cross-host device transfers via ICI/NCCL. Please set " "jax_cross_host_transfer_socket_address and (optionally) " "jax_cross_host_transport_addresses flags to enable DCN-based cross " "host device transfers.") return different_process_inds @dataclasses.dataclass(frozen=True) class _DeferredShardArg: """Deferred call to `pxla.shard_args`. Per-array impls return this object instead of a result array to indicate a deferred `shard_args` call. `_batched_device_put_impl` then batches all `_DeferredShardArg` objects into a single `shard_args` call. """ x: Any s: Sharding aval: core.AbstractValue committed: bool copy_semantics: ArrayCopySemantics def result_handler(self, shard_arg_result): return pxla.global_aval_to_result_handler( self.aval, self.s, self.committed)(shard_arg_result) def _device_put_sharding_impl( x: Any, aval: core.ShapedArray, device: Device | Sharding | None, copy: ArrayCopySemantics, ): from jax.experimental import multihost_utils # pytype: disable=import-error if isinstance(x, array.ArrayImpl): x_is_jax_array = True x_is_fully_addressable, x_sharding = x.is_fully_addressable, x.sharding else: x_is_jax_array = False x_is_fully_addressable, x_sharding = None, None if isinstance(device, Sharding): s = device s_is_fully_addressable = s.is_fully_addressable if (getattr(x, 'sharding', None) == s and getattr(x, '_committed', False) and copy == ArrayCopySemantics.REUSE_INPUT): return x if (not s_is_fully_addressable and x_is_jax_array and not x_is_fully_addressable and s.device_set == x_sharding.device_set): assert isinstance(s, NamedSharding), s return _different_device_order_reshard(x, s, copy) if (s_is_fully_addressable and x_is_jax_array and x_is_fully_addressable and s.num_devices > 1 and s._internal_device_list != x_sharding._internal_device_list and # pytype: disable=attribute-error s.device_set == x_sharding.device_set): assert isinstance(s, NamedSharding), s return _different_device_order_reshard(x, s, copy) if (x_is_jax_array and x._committed and xla_bridge.process_count() > 1 and _is_supported_cross_host_transfer(x.ndim, x_sharding, s)): return xc.batched_copy_array_to_devices_with_sharding( [x], [s._internal_device_list], [s], # pytype: disable=attribute-error [copy])[0] if not s_is_fully_addressable: # If both the source and target shardings are not fully addressable and # one of the above conditions has not been met, then assume that the user # is attempting a different device order reshard. if (x_is_jax_array and not x_is_fully_addressable and s.device_set != x_sharding.device_set): inp_ids = [d.id for d in x_sharding._device_assignment] inp_plat = x_sharding._device_assignment[0].platform.upper() target_ids = [d.id for d in s._device_assignment] target_plat = s._device_assignment[0].platform.upper() raise ValueError( "For a cross-host reshard in multi-controller JAX, input and target" " sharding should have the same set of devices. Got input's device" f" set ids: {inp_ids} on platform {inp_plat} and target sharding's" f" device set ids: {target_ids} on platform {target_plat}.\n\n" "There is experimental support for cross-host transfers with " "different device sets, when input/output shardings have the same " "indices and layouts, in the TFRT TPU runtime only.") if ((x_is_jax_array and not x._committed) or type(x) in array_types or type(x) in dtypes.python_scalar_types): # If all hosts participate in the sharding, assert that the input is the # same on all hosts. If some hosts have no addressable devices in the # sharding, bypass the check, since we can't easily distinguish between # these two cases: (1) the sharding contains the same subset of global # devices on all hosts (and hosts with no addressable devices in the # sharding do not transfer data) or (2) the sharding contains a # different subset of devices on each host. For (1), the input should be # the same on all hosts, but for (2) it need not be. if xla_bridge.process_count() == len(s._internal_device_list.process_indices): # pytype: disable=attribute-error multihost_utils.assert_equal( x, fail_message=( f"{type(x)} passed to device_put is not the same on each" " process. Make sure you are passing the same value of" f" {type(x)} on each process.")) return _DeferredShardArg(x, s, aval, True, copy) # TODO(yashkatariya,mattjj): Link to a doc about McJAX and jax.Array. raise ValueError( "device_put's second argument must be a Device or a Sharding which" f" represents addressable devices, but got {s}. Please pass device or" " Sharding which represents addressable devices.") return _DeferredShardArg(x, s, aval, True, copy) # Only `Device` exists below. `Sharding` instance is handled above. if x_is_jax_array: if not x_is_fully_addressable: raise ValueError( "device_put's first argument must be a fully addressable array, but " f"got value with devices {x.devices()}") if device is None: if copy == ArrayCopySemantics.REUSE_INPUT: return x else: return _DeferredShardArg(x, x_sharding, aval, x.committed, copy) elif is_single_device_sharding(x_sharding): device = x_sharding._device_assignment[0] if device is None else device if copy == ArrayCopySemantics.ALWAYS_COPY: return xc.batched_device_put(aval, SingleDeviceSharding(device), [x], [device], True, True) return pxla.batched_device_put(aval, SingleDeviceSharding(device), [x], [device]) sh = SingleDeviceSharding(pxla.get_default_device() if device is None else device) return _DeferredShardArg(x, sh, aval, device is not None, copy) def _device_put_impl( x, *, device: Device | Sharding | Format | None, src: Device | Sharding | Format | None, copy: ArrayCopySemantics, aval): if aval is None: try: aval = core.abstractify(x) aval = update_dp_aval(aval, device) except TypeError as err: raise TypeError( f"Argument '{x}' of type {type(x)} is not a valid JAX type") from err if isinstance(device, core.MemorySpace): return apply_primitive(device_put_p, x, devices=(device,), srcs=(src,), copy_semantics=(copy,))[0] if isinstance(device, Format): l = device dll = l.layout x_dll = x.format.layout if hasattr(x, 'format') else None if dll is None and l.sharding is None: return _device_put_sharding_impl(x, aval, l.sharding, copy) if (not isinstance(l.sharding, Sharding) or not isinstance(dll, (Layout, type(None)))): raise ValueError( "sharding and layout in `Layout` instance should be" f" concrete. Got layout: {l} for input {aval.str_short()}") if (getattr(x, 'format', None) == l and getattr(x, '_committed', False) and copy == ArrayCopySemantics.REUSE_INPUT): return x if x_dll is None and dll is None: return _device_put_sharding_impl(x, aval, l.sharding, copy) return api.jit( _identity_fn, out_shardings=l, donate_argnums=(0 if copy == ArrayCopySemantics.DONATE_INPUT else None), )(x) return _device_put_sharding_impl(x, aval, device, copy) def _batched_device_put_impl( *xs, devices: Sequence[Device | Sharding | Format | None], srcs: Sequence[Device | Sharding | Format | None], copy_semantics: Sequence[ArrayCopySemantics], dst_avals: Sequence[core.ShapedArray | None]): ys = [] dsa_indices, dsa_xs, dsa_shardings, dsa_copy_semantics = [], [], [], [] for i, (x, device, src, cp, aval) in enumerate( zip(xs, devices, srcs, copy_semantics, dst_avals)): y = _device_put_impl(x, device=device, src=src, copy=cp, aval=aval) if isinstance(y, _DeferredShardArg): dsa_indices.append(i) dsa_xs.append(y.x) dsa_shardings.append(y.s) dsa_copy_semantics.append(y.copy_semantics) ys.append(y) if dsa_xs: # Batch shard_arg calls. Helps improve efficiency for backends that support # efficient batch transfer. # device_put handles `Format` via a different path, so just pass `None` as # the layout here. shard_arg_results = pxla.shard_args(dsa_shardings, [None] * len(dsa_xs), dsa_copy_semantics, dsa_xs) for i, shard_arg_result in zip(dsa_indices, shard_arg_results): assert isinstance(ys[i], _DeferredShardArg) ys[i] = ys[i].result_handler(shard_arg_result) return ys def batched_device_put_impl( *xs, devices: Sequence[Device | Sharding | Format | None], srcs: Sequence[Device | Sharding | Format | None], copy_semantics: Sequence[ArrayCopySemantics]): return _batched_device_put_impl( *xs, devices=devices, srcs=srcs, copy_semantics=copy_semantics, dst_avals=[None] * len(devices)) device_put_p = core.Primitive('device_put') device_put_p.multiple_results = True device_put_p.def_impl(batched_device_put_impl) def _device_put_folding_rule(consts, params, out_avals): # We elide device_puts that do nothing; these can be generated by jnp.array, # for example. if (all(x is None for x in params["devices"]) and all(isinstance(x, literals.TypedNdArray) for x in consts) and all(x == ArrayCopySemantics.REUSE_INPUT for x in params["copy_semantics"])): return consts return None partial_eval.const_fold_rules[device_put_p] = _device_put_folding_rule def update_dp_aval(aval, d): if not isinstance(aval, core.ShapedArray): return aval if isinstance(d, Sharding): aval = (aval.update(sharding=aval.sharding.update(mesh=d.mesh.abstract_mesh)) if isinstance(d, NamedSharding) else aval.update(sharding=None)) if d.memory_kind is not None: aval = aval.update(memory_space=core.mem_kind_to_space(d.memory_kind)) return aval elif isinstance(d, core.MemorySpace): return aval.update(memory_space=d) return aval def _device_put_abstract_eval(*xs, devices, srcs, copy_semantics): return [update_dp_aval(x, d) for x, d in zip(xs, devices)] device_put_p.def_abstract_eval(_device_put_abstract_eval) def _device_put_transpose(cts, *_, devices, srcs, copy_semantics): results = [None] * len(cts) dp_args = [] for i, (ct, device, src, cp) in enumerate(zip(cts, devices, srcs, copy_semantics)): if type(ct) is not ad.Zero: dp_args.append((i, ct, device, src, cp)) if dp_args: indices, args, devices, srcs, copy_semantics = list(zip(*dp_args)) new_copy_semantics = [] for cp in copy_semantics: if cp == ArrayCopySemantics.DONATE_INPUT: raise ValueError( "donate=True is not allowed during tranposition of device_put." " Please file an issue if you want this to be supported.") elif cp == ArrayCopySemantics.REUSE_INPUT: new_copy_semantics.append(ArrayCopySemantics.ALWAYS_COPY) else: assert cp == ArrayCopySemantics.ALWAYS_COPY new_copy_semantics.append(ArrayCopySemantics.ALWAYS_COPY) ys = device_put_p.bind(*args, devices=srcs, srcs=devices, copy_semantics=tuple(new_copy_semantics)) for i, y in zip(indices, ys): results[i] = y return results ad.primitive_jvps[device_put_p] = partial(ad.linear_jvp, device_put_p) ad.primitive_transposes[device_put_p] = _device_put_transpose def _device_put_batcher(batched_args, batch_dims, **params): mapped_batch_dims = [bd for bd in batch_dims if bd is not batching.not_mapped] assert not mapped_batch_dims or all( mapped_batch_dims[0] == bd for bd in mapped_batch_dims[1:] ), batch_dims return device_put_p.bind(*batched_args, **params), batch_dims batching.primitive_batchers[device_put_p] = _device_put_batcher def _tpu_gpu_device_put_lowering(ctx, *xs, devices, srcs, copy_semantics): # TODO(yashkatariya): Maybe we should add the custom calls anyways if it's # being used inside jit? Atleast for now, this preserves the old behavior. if ctx.module_context.all_default_mem_kind: return xs def lower(x, device, aval, out_aval): if ((isinstance(device, Sharding) and device.memory_kind is not None) or isinstance(device, core.MemorySpace)): if isinstance(device, Sharding): if config.use_shardy_partitioner.value: x = mlir.wrap_with_sharding_op( ctx, x, out_aval, device._to_sdy_sharding(aval.ndim)) else: x = mlir.wrap_with_sharding_op( ctx, x, out_aval, device._to_xla_hlo_sharding(aval.ndim).to_proto()) mem_kind = (core.mem_space_to_kind(device) if isinstance(device, core.MemorySpace) else device.memory_kind) x = mlir.wrap_with_memory_kind(x, mem_kind, out_aval) return x return x return list(map(lower, xs, devices, ctx.avals_in, ctx.avals_out)) mlir.register_lowering( device_put_p, _tpu_gpu_device_put_lowering, platform='tpu') mlir.register_lowering( device_put_p, _tpu_gpu_device_put_lowering, platform='gpu') def _common_device_put_lowering(ctx, *xs, devices, srcs, copy_semantics): return xs mlir.register_lowering(device_put_p, _common_device_put_lowering)