# Copyright 2018 The JAX Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from collections.abc import Iterable import numpy as np from typing import Any, Callable, TypeAlias from jax._src.lax import lax from jax._src import dtypes from jax._src.tree_util import tree_flatten, tree_unflatten, PyTreeDef, Leaf from jax._src.util import safe_zip as zip, unzip2, HashablePartial from jax._src.typing import Array Sizes: TypeAlias = tuple[int, ...] Shapes: TypeAlias = tuple[tuple[int, ...], ...] def ravel_pytree(pytree: Any) -> tuple[Array, Callable[[Array], Any]]: """Ravel (flatten) a pytree of arrays down to a 1D array. Args: pytree: a pytree of arrays and scalars to ravel. Returns: A pair where the first element is a 1D array representing the flattened and concatenated leaf values, with dtype determined by promoting the dtypes of leaf values, and the second element is a callable for unflattening a 1D vector of the same length back to a pytree of the same structure as the input ``pytree``. If the input pytree is empty (i.e. has no leaves) then as a convention a 1D empty array of dtype float32 is returned in the first component of the output. For details on dtype promotion, see https://docs.jax.dev/en/latest/type_promotion.html. """ leaves, treedef = tree_flatten(pytree) flat, unravel_list = _ravel_list(leaves) return flat, HashablePartial(unravel_pytree, treedef, unravel_list) def unravel_pytree( treedef: PyTreeDef, unravel_list: Callable[[Array], Iterable[Leaf]], flat: Array, ) -> Any: return tree_unflatten(treedef, unravel_list(flat)) def _ravel_list(lst: list[Any], /) -> tuple[Array, Callable[[Array], list[Any]]]: if not lst: return lax.full([0], 0, "float32"), lambda _: [] from_dtypes = tuple(dtypes.dtype(l) for l in lst) to_dtype = dtypes.result_type(*from_dtypes) sizes, shapes = unzip2((np.size(x), np.shape(x)) for x in lst) if all(dt == to_dtype for dt in from_dtypes): # Skip any dtype conversion, resulting in a dtype-polymorphic `unravel`. # See https://github.com/jax-ml/jax/issues/7809. del from_dtypes, to_dtype ravel = lambda e: lax.reshape(e, (np.size(e),)) raveled = lax.concatenate([ravel(e) for e in lst], dimension=0) return raveled, HashablePartial(_unravel_list_single_dtype, sizes, shapes) # When there is more than one distinct input dtype, we perform type # conversions and produce a dtype-specific unravel function. ravel = lambda e: lax.convert_element_type(e, to_dtype).ravel() raveled = lax.concatenate([ravel(e) for e in lst], dimension=0) unrav = HashablePartial(_unravel_list, sizes, shapes, from_dtypes, to_dtype) return raveled, unrav def _unravel_list_single_dtype(sizes: Sizes, shapes: Shapes, arr: Array) -> list[Array]: chunks = lax.split(arr, sizes) return [chunk.reshape(shape) for chunk, shape in zip(chunks, shapes)] def _unravel_list( sizes: Sizes, shapes: Shapes, from_dtypes: tuple[np.dtype, ...], to_dtype: np.dtype, arr: Array, ) -> list[Array]: arr_dtype = dtypes.dtype(arr) if arr_dtype != to_dtype: raise TypeError( f"unravel function given array of dtype {arr_dtype}, " f"but expected dtype {to_dtype}" ) chunks = lax.split(arr, sizes) return [ lax._convert_element_type( chunk.reshape(shape), dtype, warn_on_complex_to_real_cast=False ) for chunk, shape, dtype in zip(chunks, shapes, from_dtypes) ]