# Copyright 2024 The JAX Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from functools import partial, wraps from typing import Any from jax._src import config from jax._src import core from jax._src import dispatch from jax._src import tree_util from jax._src import xla_metadata_lib from jax._src.interpreters import ad, batching, mlir from jax._src.lib import xla_client from jax._src.lib.mlir import ir config_ext = xla_client._xla.config class _XlaMetadataWrapper: """A wrapper class to allow XlaMetadataContextManager to be used as a decorator. When XlaMetadataContextManager is used as a decorator on a function `f`, it returns an instance of this class. This wrapper ensures that when `f` is called, it runs within the metadata context. It also forwards attribute access to `f` via `__getattr__`, and if an attribute of `f` is callable (e.g., the `.lower()` method of a jitted function), it wraps that attribute so it too runs within the metadata context when called. This allows decorated functions to be used seamlessly with JAX transformations like `jax.jit`. """ def __init__(self, f, ctx): self._f = f self._ctx = ctx wraps(f)(self) def __call__(self, *args, **kwargs): with self._ctx: return self._f(*args, **kwargs) def __getattr__(self, name): attr = getattr(self._f, name) if not callable(attr): return attr @wraps(attr) def wrapper(*args, **kwargs): with self._ctx: return attr(*args, **kwargs) return wrapper class XlaMetadataContextManager: __slots__ = ["prev", "updates"] def __init__(self, updates): self.updates = updates def __enter__(self): if not self.updates: return self.prev = config.xla_metadata_context_manager.get_local() config.xla_metadata_context_manager.set_local( xla_metadata_lib.update_metadata(self.prev, self.updates) ) def __exit__(self, exc_type, exc_value, traceback): if not self.updates: return config.xla_metadata_context_manager.set_local(self.prev) def __call__(self, f): return _XlaMetadataWrapper(f, self) def set_xla_metadata(x=None, **kwargs): if x is None: return XlaMetadataContextManager(kwargs) else: hashable_metadata = tuple(sorted(kwargs.items())) return tree_util.tree_map( lambda v: xla_metadata_value_p.bind( v, xla_metadata_kvs=hashable_metadata ), x, ) # `xla_metadata_value_p` is an identity primitive for attaching frontend_attributes # to the primitive's producing (parent/owner) op. xla_metadata_value_p = core.Primitive("xla_metadata_value") xla_metadata_value_p.def_impl( partial(dispatch.apply_primitive, xla_metadata_value_p) ) xla_metadata_value_p.def_abstract_eval(lambda aval, *, xla_metadata_kvs: aval) batching.defvectorized(xla_metadata_value_p) # TODO(nbasile): Implement tagging gradient ops with metadata. ad.deflinear2(xla_metadata_value_p, lambda ct, _, **kwargs: (ct,)) def _xla_metadata_value_lowering_rule( ctx: mlir.LoweringRuleContext, val: ir.Value, *, xla_metadata_kvs ): xla_metadata = dict(xla_metadata_kvs) op_to_attach_metadata = _target_op_to_attach_metadata(val) if op_to_attach_metadata is not None: _attach_xla_metadata_to_op(xla_metadata, op_to_attach_metadata) return [val] # If we leave `cacheable=True`, when we are in the lowering rule, the `val.owner` # becomes a cached `FuncOp`. FuncOp.owners are Blocks, which we can't tag. mlir.register_lowering( xla_metadata_value_p, _xla_metadata_value_lowering_rule, cacheable=False ) def _target_op_to_attach_metadata(value_mlir: ir.Value) -> ir.Operation | None: op = value_mlir.owner if op is None or isinstance(op, ir.Block): return None return op def _attach_xla_metadata_to_op( xla_metadata: dict[str, Any], op: ir.Operation ) -> None: if xla_metadata: ctx_attributes, existing_attributes = {}, {} for k, v in xla_metadata.items(): ctx_attributes[k] = ir.StringAttr.get(str(v).lower()) # Combine with existing mhlo.frontend_attributes for attr in op.attributes: if attr == "mhlo.frontend_attributes": for a in op.attributes[attr]: existing_attributes[a.name] = a.attr op.attributes["mhlo.frontend_attributes"] = ir.DictAttr.get( ctx_attributes | existing_attributes )