# Copyright 2025 The JAX Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from jax._src import core from jax._src import linear_util as lu from jax._src import dispatch from jax._src.core import typeof from jax._src.tree_util import tree_flatten, tree_unflatten from jax._src.util import safe_map, safe_zip, weakref_lru_cache, unzip2 from jax._src.api_util import debug_info, flatten_fun_nokwargs from jax._src.interpreters import ad from jax._src.interpreters import batching from jax._src.interpreters import mlir from jax._src.interpreters import partial_eval as pe from jax._src.lib.mlir import ir map, unsafe_map = safe_map, map zip, unsafe_zip = safe_zip, zip def fused(*, out_spaces): def wrap(f): def wrapped(*args): dbg = debug_info('fused', f, args, {}) args_flat, in_tree = tree_flatten(args) in_avals = [typeof(x).update(memory_space=core.MemorySpace.Any) for x in args_flat] jaxpr, out_tree = _trace_to_jaxpr(f, in_tree, tuple(in_avals), dbg) outs_flat = fused_p.bind(*args_flat, jaxpr=jaxpr, out_spaces=out_spaces) return tree_unflatten(out_tree, outs_flat) return wrapped return wrap @weakref_lru_cache def _trace_to_jaxpr(fun, in_tree, in_avals, dbg): f = lu.wrap_init(fun, debug_info=dbg) f, out_tree = flatten_fun_nokwargs(f, in_tree) jaxpr, _, consts = pe.trace_to_jaxpr_dynamic(f, in_avals) return core.ClosedJaxpr(jaxpr, consts), out_tree() fused_p = core.Primitive('fused_call') fused_p.multiple_results = True @fused_p.def_abstract_eval def _fused_abstract_eval(*in_avals, out_spaces, jaxpr): return [a.update(memory_space=s) for a, s in zip(jaxpr.out_avals, out_spaces)] dispatch.simple_impl(fused_p) def _fused_lowering(ctx, *args, out_spaces, jaxpr): const_args_and_avals = core.jaxpr_const_args(jaxpr.jaxpr) const_args, const_arg_avals = unzip2(const_args_and_avals) const_arg_values = [ mlir.ir_constant(c, const_lowering=ctx.const_lowering, aval=aval) for c, aval in const_args_and_avals] in_avals = [*const_arg_avals, *ctx.avals_in] func_op, _, _ = mlir.lower_called_computation( "fused", jaxpr, ctx.module_context, len(const_args), in_avals, ctx.avals_out, ctx.tokens_in) out_spaces_ = [ir.StringAttr.get(str(s)) for s in out_spaces] fused = mlir.custom_call( "fused", result_types=func_op.type.results, operands=mlir.flatten_ir_values([*const_arg_values, *args]), called_computations=[func_op.name.value], backend_config=dict(out_spaces=ir.ArrayAttr.get(out_spaces_), inlineable=ir.BoolAttr.get(False), MUST_FUSE=ir.BoolAttr.get(True)), ) return fused.results mlir.register_lowering(fused_p, _fused_lowering, platform="cuda") def _fused_batcher(axis_data, vals_in, dims_in, *, jaxpr, out_spaces): batched_jaxpr, dims_out = batching.batch_jaxpr2(jaxpr, axis_data, dims_in) outs = fused_p.bind(*vals_in, jaxpr=batched_jaxpr, out_spaces=out_spaces) return outs, dims_out batching.fancy_primitive_batchers[fused_p] = _fused_batcher def _fused_jvp(primals, tangents, *, jaxpr, out_spaces): nzs = [not isinstance(t, ad.Zero) for t in tangents] jaxpr_jvp, out_nzs = ad.jvp_jaxpr(jaxpr, nzs, False) nz_tangents = [t for t in tangents if not isinstance(t, ad.Zero)] spaces_jvp = (*out_spaces, *[s for s, nz in zip(out_spaces, out_nzs) if nz]) outs = fused_p.bind(*primals, *nz_tangents, jaxpr=jaxpr_jvp, out_spaces=spaces_jvp) primals_out, nz_tangents_out = outs[:len(out_nzs)], outs[len(out_nzs):] nz_outs = iter(nz_tangents_out) tangents_out = [next(nz_outs) if nz else ad.Zero(aval.to_tangent_aval()) for aval, nz in zip(jaxpr.out_avals, out_nzs)] assert next(nz_outs, None) is None return primals_out, tangents_out ad.primitive_jvps[fused_p] = _fused_jvp def _fused_lin(nzs, *primals, jaxpr, out_spaces): jaxpr_jvp, out_nzs = ad.jvp_jaxpr(jaxpr, nzs, False) lin_outs = [False] * len(out_nzs) + [True] * sum(out_nzs) jaxpr_lin_, used_inputs = pe.dce_jaxpr(jaxpr_jvp.jaxpr, lin_outs, False) jaxpr_lin = pe.close_jaxpr(jaxpr_lin_) spaces_lin = tuple(s for s, nz in zip(out_spaces, out_nzs) if nz) primals_out = fused_p.bind(*primals, jaxpr=jaxpr, out_spaces=out_spaces) tangent_avals_out = [a.to_tangent_aval() for a in jaxpr.out_avals] def fused_lin(primals, *tangents): nz_tangents = [t for t in tangents if not isinstance(t, ad.Zero)] inputs = [x for x, u in zip([*primals, *nz_tangents], used_inputs) if u] nz_outs = fused_p.bind(*inputs, jaxpr=jaxpr_lin, out_spaces=spaces_lin) nz_outs_ = iter(nz_outs) outs = [next(nz_outs_) if nz else ad.Zero(a) for nz, a in zip(out_nzs, tangent_avals_out)] assert next(nz_outs_, None) is None return outs return primals_out, out_nzs, primals, fused_lin ad.primitive_linearizations[fused_p] = _fused_lin def _fused_transpose(cts_in, *primals_in, jaxpr, out_spaces): in_flat, in_tree = tree_flatten((primals_in, cts_in)) in_avals = [typeof(x).update(memory_space=core.MemorySpace.Any) for x in in_flat] trans_jaxpr, out_tree = _transpose_jaxpr(jaxpr, in_tree, (*in_avals,)) in_spaces = [x.aval.memory_space if isinstance(x, ad.UndefinedPrimal) else typeof(x).memory_space for x in primals_in] cts_out_ = tree_unflatten(out_tree, trans_jaxpr.out_avals) trans_spaces = tuple(s for x, s in zip(cts_out_, in_spaces) if x) cts_out = fused_p.bind(*in_flat, jaxpr=trans_jaxpr, out_spaces=trans_spaces) return tree_unflatten(out_tree, cts_out) @weakref_lru_cache def _transpose_jaxpr(jaxpr, in_tree, in_avals): cell = lambda: None def transposed(*in_flat): primals_in, cts_in = tree_unflatten(in_tree, in_flat) out = ad.backward_pass(jaxpr.jaxpr, False, jaxpr.consts, primals_in, cts_in) out = [ct if not isinstance(ct, ad.Zero) else None for ct in out] cts_out, cell.out_tree = tree_flatten(out) # type: ignore return cts_out dbg = jaxpr.jaxpr.debug_info.with_unknown_names() trans_jaxpr, _, consts = pe.trace_to_jaxpr_dynamic( lu.wrap_init(transposed, debug_info=dbg), in_avals) return core.ClosedJaxpr(trans_jaxpr, consts), cell.out_tree # type: ignore ad.primitive_transposes[fused_p] = _fused_transpose