# Copyright 2025 The JAX Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from functools import partial from jax._src import core from jax._src import dispatch from jax._src import linear_util as lu from jax._src.api_util import debug_info, flatten_fun from jax._src.util import (safe_map, safe_zip, weakref_lru_cache, unzip2, split_list) from jax._src.tree_util import tree_flatten, tree_unflatten from jax._src.interpreters import ad, mlir, partial_eval as pe, batching from jax._src.lib.mlir.dialects import func as func_dialect from jax._src.lib.mlir import ir map, unsafe_map = safe_map, map zip, unsafe_zip = safe_zip, zip def scheduling_group(name): return xla_metadata_call(scheduling_group=name) def xla_metadata_call(f=None, **meta): if f is None: return lambda g: _xla_metadata_call(g, **meta) return _xla_metadata_call(f, **meta) # TODO(yashkatariya): Figure out a way to reuse code with compute_on2_p, fused_p def _xla_metadata_call(fun, **meta): def wrapped(*args, **kwargs): dbg = debug_info('xla_metadata_call', fun, args, kwargs) args_flat, in_tree = tree_flatten((args, kwargs)) f = lu.wrap_init(fun, debug_info=dbg) f, out_tree = flatten_fun(f, in_tree) in_avals = tuple(core.shaped_abstractify(x) for x in args_flat) jaxpr = _trace_to_jaxpr(f, in_avals) outs_flat = xla_metadata_call_p.bind(*args_flat, jaxpr=jaxpr, **meta) return tree_unflatten(out_tree(), outs_flat) return wrapped @lu.cache def _trace_to_jaxpr(flat_fun, in_avals): jaxpr, _, consts = pe.trace_to_jaxpr_dynamic(flat_fun, in_avals) return core.ClosedJaxpr(jaxpr, consts) xla_metadata_call_p = core.Primitive('xla_metadata_call') xla_metadata_call_p.multiple_results = True dispatch.simple_impl(xla_metadata_call_p) def _xla_metadata_call_abstract_eval(*in_avals, jaxpr, **meta): return jaxpr.out_avals xla_metadata_call_p.def_abstract_eval(_xla_metadata_call_abstract_eval) def attr_get(x): if isinstance(x, str): return ir.StringAttr.get(x) else: raise NotImplementedError(f'mlir attr handler for {type(x)=}') def _xla_metadata_call_lowering(ctx, *args, jaxpr, **meta): const_args_and_avals = core.jaxpr_const_args(jaxpr.jaxpr) const_args, const_avals = unzip2(const_args_and_avals) const_arg_values = [ mlir.ir_constant(c, const_lowering=ctx.const_lowering, aval=aval) for c, aval in const_args_and_avals] in_avals = (*const_avals, *ctx.avals_in) func_op, output_types, effects = mlir.lower_called_computation( "xla_metadata_call", jaxpr, ctx.module_context, len(const_args), in_avals, ctx.avals_out, ctx.tokens_in) symbol_name = func_op.name.value flat_output_types = mlir.flatten_ir_types(output_types) tokens = [ctx.tokens_in.get(eff) for eff in effects] args = (*ctx.dim_var_values, *tokens, *const_arg_values, *args) call = func_dialect.CallOp( flat_output_types, ir.FlatSymbolRefAttr.get(symbol_name), mlir.flatten_ir_values(args)) call.operation.attributes['mhlo.frontend_attributes'] = ir.DictAttr.get( {k: attr_get(v) for k, v in meta.items()}) out_nodes = mlir.unflatten_ir_values_like_types(call.results, output_types) tokens, out_nodes = split_list(out_nodes, [len(effects)]) tokens_out = ctx.tokens_in.update_tokens(mlir.TokenSet(zip(effects, tokens))) ctx.set_tokens_out(tokens_out) return out_nodes mlir.register_lowering(xla_metadata_call_p, _xla_metadata_call_lowering) def _xla_metadata_call_batcher(axis_data, vals_in, dims_in, *, jaxpr, **meta): batched_jaxpr, dims_out = batching.batch_jaxpr2(jaxpr, axis_data, dims_in) outs = xla_metadata_call_p.bind(*vals_in, jaxpr=batched_jaxpr, **meta) return outs, dims_out batching.fancy_primitive_batchers[xla_metadata_call_p] = _xla_metadata_call_batcher def _xla_metadata_call_jvp(primals, tangents, *, jaxpr, **meta): nzs = [not isinstance(t, ad.Zero) for t in tangents] jaxpr_jvp, out_nzs = ad.jvp_jaxpr(jaxpr, nzs, False) nz_tangents = [t for t in tangents if not isinstance(t, ad.Zero)] outs = xla_metadata_call_p.bind(*primals, *nz_tangents, jaxpr=jaxpr_jvp, **meta) primals_out, nz_tangents_out = outs[:len(out_nzs)], outs[len(out_nzs):] nz_outs = iter(nz_tangents_out) tangents_out = [next(nz_outs) if nz else ad.Zero(aval.to_tangent_aval()) for aval, nz in zip(jaxpr.out_avals, out_nzs)] assert next(nz_outs, None) is None return primals_out, tangents_out ad.primitive_jvps[xla_metadata_call_p] = _xla_metadata_call_jvp def _xla_metadata_call_lin(nzs, *primals, jaxpr, **meta): jaxpr_jvp, out_nzs = ad.jvp_jaxpr(jaxpr, nzs, False) lin_outs = [False] * len(out_nzs) + [True] * sum(out_nzs) jaxpr_lin_, used_inputs = pe.dce_jaxpr(jaxpr_jvp.jaxpr, lin_outs, False) jaxpr_lin = pe.close_jaxpr(jaxpr_lin_) primals_out = xla_metadata_call_p.bind(*primals, jaxpr=jaxpr, **meta) tangent_avals_out = [a.to_tangent_aval() for a in jaxpr.out_avals] def xla_metadata_call_lin(primals, *tangents): nz_tangents = [t for t in tangents if not isinstance(t, ad.Zero)] inputs = [x for x, u in zip([*primals, *nz_tangents], used_inputs) if u] nz_outs = xla_metadata_call_p.bind(*inputs, jaxpr=jaxpr_lin, **meta) nz_outs_ = iter(nz_outs) outs = [next(nz_outs_) if nz else ad.Zero(a) for nz, a in zip(out_nzs, tangent_avals_out)] assert next(nz_outs_, None) is None return outs return primals_out, out_nzs, primals, xla_metadata_call_lin ad.primitive_linearizations[xla_metadata_call_p] = _xla_metadata_call_lin pe.partial_eval_jaxpr_custom_rules[xla_metadata_call_p] = \ partial(pe.closed_call_partial_eval_custom_rule, 'jaxpr', lambda _, __, ___, ____, _____, ______, x, y: (x, y)) @weakref_lru_cache def _transpose_jaxpr(jaxpr, in_avals, in_tree): cell = lambda: None def transposed(*in_flat): primals_in, cts_in = tree_unflatten(in_tree, in_flat) out = ad.backward_pass(jaxpr.jaxpr, False, jaxpr.consts, primals_in, cts_in) out = [ct if not isinstance(ct, ad.Zero) else None for ct in out] cts_out, cell.out_tree = tree_flatten(out) # type: ignore return cts_out dbg = jaxpr.jaxpr.debug_info.with_unknown_names() trans_jaxpr, _, consts = pe.trace_to_jaxpr_dynamic( lu.wrap_init(transposed, debug_info=dbg), in_avals) return core.ClosedJaxpr(trans_jaxpr, consts), cell.out_tree # type: ignore def _xla_metadata_call_transpose(cts_in, *primals_in, jaxpr, **meta): in_flat, in_tree = tree_flatten((primals_in, cts_in)) in_avals = tuple(core.typeof(x) for x in in_flat) trans_jaxpr, out_tree = _transpose_jaxpr(jaxpr, in_avals, in_tree) cts_out = xla_metadata_call_p.bind(*in_flat, jaxpr=trans_jaxpr, **meta) return tree_unflatten(out_tree, cts_out) ad.primitive_transposes[xla_metadata_call_p] = _xla_metadata_call_transpose def dce_jaxpr_xla_metadata_rule(used_outputs: list[bool], eqn: pe.JaxprEqn ) -> tuple[list[bool], pe.JaxprEqn | None]: if not any(used_outputs) and not pe.has_effects(eqn): return [False] * len(eqn.invars), None jaxpr_ = eqn.params['jaxpr'] closed_jaxpr, used_inputs = pe._cached_closed_call_dce( jaxpr_, tuple(used_outputs)) new_params = dict(eqn.params, jaxpr=closed_jaxpr) new_eqn = pe.new_jaxpr_eqn( [v for v, used in zip(eqn.invars, used_inputs) if used], [v for v, used in zip(eqn.outvars, used_outputs) if used], eqn.primitive, new_params, closed_jaxpr.effects, eqn.source_info, eqn.ctx) return used_inputs, new_eqn pe.dce_rules[xla_metadata_call_p] = dce_jaxpr_xla_metadata_rule