DriverTrac/venv/lib/python3.12/site-packages/roboflow/models/object_detection.py
2025-11-28 09:08:33 +05:30

552 lines
20 KiB
Python

import base64
import copy
import io
import json
import os
import random
import urllib
import requests
from PIL import Image
from roboflow.config import OBJECT_DETECTION_MODEL, OBJECT_DETECTION_URL
from roboflow.models.inference import InferenceModel
from roboflow.util.image_utils import check_image_url
from roboflow.util.prediction import PredictionGroup
from roboflow.util.versions import print_warn_for_wrong_dependencies_versions
class ObjectDetectionModel(InferenceModel):
"""
Run inference on an object detection model hosted on Roboflow or served through Roboflow Inference.
""" # noqa: E501 // docs
def __init__(
self,
api_key,
id,
name=None,
version=None,
local=None,
classes=None,
overlap=30,
confidence=40,
stroke=1,
labels=False,
format="json",
colors=None,
preprocessing=None,
):
"""
Create a ObjectDetectionModel object through which you can run inference.
Args:
api_key (str): Your API key (obtained via your workspace API settings page).
name (str): The url-safe version of the dataset name. You can find it in the web UI by looking at
the URL on the main project view or by clicking the "Get curl command" button in the train
results section of your dataset version after training your model.
local (str): Address of the local server address if running a local Roboflow deployment server.
Ex. http://localhost:9001/
version (str): The version number identifying the version of your dataset.
classes (str): Restrict the predictions to only those of certain classes. Provide as a comma-separated string.
overlap (int): The maximum percentage (on a scale of 0-100) that bounding box predictions of the same class are
allowed to overlap before being combined into a single box.
confidence (int): A threshold for the returned predictions on a scale of 0-100. A lower number will return
more predictions. A higher number will return fewer high-certainty predictions.
stroke (int): The width (in pixels) of the bounding box displayed around predictions (only has an effect when
format is image).
labels (bool): Whether or not to display text labels on the predictions (only has an effect when format is
image).
format (str): The format of the output.
- 'json': returns an array of JSON predictions (See response format tab).
- 'image': returns an image with annotated predictions as a binary blob with a Content-Type
of image/jpeg.
""" # noqa: E501 // docs
# Instantiate different API URL parameters
# To be moved to predict
super().__init__(api_key, id)
self.__api_key = api_key
self.id = id
self.name = name
self.version = version or self.version
self.classes = classes
self.overlap = overlap
self.confidence = confidence
self.stroke = stroke
self.labels = labels
self.format = format
self.colors = {} if colors is None else colors
self.preprocessing = {} if preprocessing is None else preprocessing
# local needs to be passed from Project
if local is None:
self.base_url = OBJECT_DETECTION_URL + "/"
else:
print("initalizing local object detection model hosted at :" + local)
self.base_url = local
# If dataset slug not none, instantiate API URL
if name is not None and version is not None:
self.__generate_url()
def load_model(
self,
name,
version,
local=None,
classes=None,
overlap=None,
confidence=None,
stroke=None,
labels=None,
format=None,
):
"""
Loads a Model from on a model endpoint.
Args:
name (str): The url-safe version of the dataset name
version (str): The version number identifying the version of your dataset.
local (bool): Whether the model is hosted locally or on Roboflow
"""
# To load a model manually, they must specify a dataset slug
self.name = name
self.version = version
# Generate URL based on parameters
self.__generate_url(
local=local,
classes=classes,
overlap=overlap,
confidence=confidence,
stroke=stroke,
labels=labels,
format=format,
)
def predict( # type: ignore[override]
self,
image_path,
hosted=False,
format=None,
classes=None,
overlap=30,
confidence=40,
stroke=1,
labels=False,
):
"""
Infers detections based on image from specified model and image path.
Args:
image_path (str): path to the image you'd like to perform prediction on
hosted (bool): whether the image you're providing is hosted on Roboflow
format (str): The format of the output.
Returns:
PredictionGroup Object
Example:
>>> import roboflow
>>> rf = roboflow.Roboflow(api_key="")
>>> project = rf.workspace().project("PROJECT_ID")
>>> model = project.version("1").model
>>> prediction = model.predict("YOUR_IMAGE.jpg")
"""
# Generate url before predicting
self.__generate_url(
format=format,
classes=classes,
overlap=overlap,
confidence=confidence,
stroke=stroke,
labels=labels,
)
# Check if image exists at specified path or URL or is an array
if hasattr(image_path, "__len__") is True:
pass
else:
self.__exception_check(image_path_check=image_path)
original_dimensions = None
should_resize = False
# If image is local image
if not hosted:
import cv2
import numpy as np
should_resize = (
"resize" in self.preprocessing.keys() and "Stretch" in self.preprocessing["resize"]["format"]
)
if isinstance(image_path, str):
image = Image.open(image_path).convert("RGB")
dimensions = image.size
original_dimensions = copy.deepcopy(dimensions)
# Here we resize the image to the preprocessing settings
# before sending it over the wire
if should_resize:
if dimensions[0] > int(self.preprocessing["resize"]["width"]) or dimensions[1] > int(
self.preprocessing["resize"]["height"]
):
image = image.resize(
(
int(self.preprocessing["resize"]["width"]),
int(self.preprocessing["resize"]["height"]),
)
)
dimensions = image.size
# Create buffer
buffered = io.BytesIO()
image.save(buffered, format="PNG")
# Base64 encode image
img_str = base64.b64encode(buffered.getvalue())
img_str = img_str.decode("ascii")
# Post to API and return response
resp = requests.post(
self.api_url,
data=img_str,
headers={"Content-Type": "application/x-www-form-urlencoded"},
)
image_dims = {
"width": str(original_dimensions[0]),
"height": str(original_dimensions[1]),
}
elif isinstance(image_path, np.ndarray):
# Performing inference on a OpenCV2 frame
retval, buffer = cv2.imencode(".jpg", image_path)
# Currently cv2.imencode does not properly return shape
dimensions = buffer.shape
img_str = base64.b64encode(buffer) # type: ignore[arg-type]
img_str = img_str.decode("ascii")
resp = requests.post(
self.api_url,
data=img_str,
headers={"Content-Type": "application/x-www-form-urlencoded"},
)
# Replace with dimensions variable once
# cv2.imencode shape solution is found
image_dims = {"width": "0", "height": "0"}
else:
raise ValueError("image_path must be a string or a numpy array.")
else:
# Create API URL for hosted image (slightly different)
self.api_url += "&image=" + urllib.parse.quote_plus(image_path)
image_dims = {"width": "0", "height": "0"}
# POST to the API
resp = requests.post(self.api_url)
resp.raise_for_status()
# Return a prediction group if JSON data
if self.format == "json":
resp_json = resp.json()
if should_resize and original_dimensions is not None:
new_preds = []
for p in resp_json["predictions"]:
p["x"] = int(p["x"] * (int(original_dimensions[0]) / int(self.preprocessing["resize"]["width"])))
p["y"] = int(p["y"] * (int(original_dimensions[1]) / int(self.preprocessing["resize"]["height"])))
p["width"] = int(
p["width"] * (int(original_dimensions[0]) / int(self.preprocessing["resize"]["width"]))
)
p["height"] = int(
p["height"] * (int(original_dimensions[1]) / int(self.preprocessing["resize"]["height"]))
)
new_preds.append(p)
resp_json["predictions"] = new_preds
return PredictionGroup.create_prediction_group(
resp_json,
image_path=image_path,
prediction_type=OBJECT_DETECTION_MODEL,
image_dims=image_dims,
colors=self.colors,
)
# Returns base64 encoded Data
elif self.format == "image":
return resp.content
def webcam(
self,
webcam_id=0,
inference_engine_url="https://detect.roboflow.com/",
within_jupyter=False,
confidence=40,
overlap=30,
stroke=1,
labels=False,
web_cam_res=(416, 416),
):
"""
Infers detections based on webcam feed from specified model.
Args:
webcam_id (int): Webcam ID (default 0)
inference_engine_url (str): Inference engine address to use (default https://detect.roboflow.com)
within_jupyter (bool): Whether or not to display the webcam within Jupyter notebook (default True)
confidence (int): Confidence threshold for detections
overlap (int): Overlap threshold for detections
stroke (int): Stroke width for bounding box
labels (bool): Whether to show labels on bounding box
""" # noqa: E501 // docs
import cv2
os.environ["OPENCV_VIDEOIO_PRIORITY_MSMF"] = "0"
# Generate url before predicting
self.__generate_url(
confidence=confidence,
overlap=overlap,
stroke=stroke,
labels=labels,
inference_engine_url=inference_engine_url,
)
def plot_one_box(x, img, color=None, label=None, line_thickness=None, colors=None):
# Plots one bounding box on image img
self.colors = {} if colors is None else colors
if label in self.colors and label is not None:
color = self.colors[label]
color = color.lstrip("#")
color = tuple(int(color[i : i + 2], 16) for i in (0, 2, 4))
else:
color = [random.randint(0, 255) for _ in range(3)]
tl = line_thickness or round(0.002 * (img.shape[0] + img.shape[1]) / 2) + 1 # line/font thickness
c1, c2 = (int(x[0]), int(x[1])), (int(x[2]), int(x[3]))
cv2.rectangle(img, c1, c2, color, thickness=tl, lineType=cv2.LINE_AA)
if label:
tf = max(tl - 1, 1) # font thickness
t_size = cv2.getTextSize(label, 0, fontScale=tl / 3, thickness=tf)[0]
c2 = c1[0] + t_size[0], c1[1] - t_size[1] - 3
cv2.rectangle(img, c1, c2, color, -1, cv2.LINE_AA) # filled
cv2.putText(
img,
label,
(c1[0], c1[1] - 2),
0,
tl / 3,
[225, 255, 255],
thickness=tf,
lineType=cv2.LINE_AA,
)
cap = cv2.VideoCapture(webcam_id)
if cap is None or not cap.isOpened():
raise (Exception("No webcam available at webcam_id " + str(webcam_id)))
cap.set(cv2.CAP_PROP_FRAME_WIDTH, web_cam_res[0])
cap.set(cv2.CAP_PROP_FRAME_HEIGHT, web_cam_res[1])
if within_jupyter:
os.environ["OPENCV_VIDEOIO_PRIORITY_MSMF"] = "0"
print_warn_for_wrong_dependencies_versions([("IPython", ">=", "7.0.0")])
print_warn_for_wrong_dependencies_versions([("ipywidgets", ">=", "7.0.0")])
import threading
import ipywidgets as widgets
from IPython.display import Image as IPythonImage
from IPython.display import display
display_handle = display("loading Roboflow model...", display_id=True)
# Stop button
# ================
stopButton = widgets.ToggleButton(
value=False,
description="Stop Inference",
disabled=False,
button_style="danger", # 'success', 'info', 'warning', 'danger' or ''
tooltip="Description",
icon="square", # (FontAwesome names without the `fa-` prefix)
)
else:
cv2.namedWindow("Roboflow Webcam Inference", cv2.WINDOW_NORMAL)
cv2.startWindowThread()
stopButton = None
def view(button):
while True:
if stopButton is not None:
if stopButton.value is True:
break
else:
if cv2.waitKey(1) & 0xFF == ord("q"): # quit when 'q' is pressed
break
_, frame = cap.read()
frame = cv2.resize(frame, web_cam_res)
frame = cv2.flip(frame, 1) # if your camera reverses your image
_, frame_upload = cv2.imencode(".jpeg", frame)
img_str = base64.b64encode(frame_upload) # type: ignore[arg-type]
img_str = img_str.decode("ascii")
# post frame to the Roboflow API
r = requests.post(
self.api_url,
data=img_str,
headers={"Content-Type": "application/x-www-form-urlencoded"},
)
json = r.json()
predictions = json["predictions"]
formatted_predictions = []
classes = []
for pred in predictions:
formatted_pred = [
pred["x"],
pred["y"],
pred["x"],
pred["y"],
pred["confidence"],
]
# convert to top-left x/y from center
formatted_pred[0] = int(formatted_pred[0] - pred["width"] / 2)
formatted_pred[1] = int(formatted_pred[1] - pred["height"] / 2)
formatted_pred[2] = int(formatted_pred[2] + pred["width"] / 2)
formatted_pred[3] = int(formatted_pred[3] + pred["height"] / 2)
formatted_predictions.append(formatted_pred)
classes.append(pred["class"])
plot_one_box(
formatted_pred,
frame,
label=pred["class"],
line_thickness=2,
colors=self.colors,
)
_, frame_display = cv2.imencode(".jpeg", frame)
if within_jupyter:
display_handle.update(IPythonImage(data=frame_display.tobytes()))
else:
cv2.imshow("Roboflow Webcam Inference", frame)
if cv2.waitKey(1) & 0xFF == ord("q"): # quit when 'q' is pressed
cap.release()
break
cap.release()
if not within_jupyter:
cv2.destroyWindow("Roboflow Webcam Inference")
cv2.destroyAllWindows()
cv2.waitKey(1)
return
if within_jupyter:
display(stopButton)
thread = threading.Thread(target=view, args=(stopButton,))
thread.start()
else:
view(stopButton)
def __exception_check(self, image_path_check=None):
# Check if Image path exists exception check
# (for both hosted URL and local image)
if image_path_check is not None:
if not os.path.exists(image_path_check) and not check_image_url(image_path_check):
raise Exception("Image does not exist at " + image_path_check + "!")
def __generate_url(
self,
local=None,
classes=None,
overlap=None,
confidence=None,
stroke=None,
labels=None,
format=None,
inference_engine_url=None,
):
"""
Generate the URL to run inference on.
"""
# Reassign parameters if any parameters are changed
if local is not None:
if not local:
self.base_url = OBJECT_DETECTION_URL + "/"
else:
self.base_url = "http://localhost:9001/"
if inference_engine_url is not None:
self.base_url = inference_engine_url
# Change any variables that the user wants to change
if classes is not None:
self.classes = classes
if overlap is not None:
self.overlap = overlap
if confidence is not None:
self.confidence = confidence
if stroke is not None:
self.stroke = stroke
if labels is not None:
self.labels = labels
if format is not None:
self.format = format
# Create the new API URL
splitted = self.id.rsplit("/")
without_workspace = splitted[1]
self.api_url = "".join(
[
self.base_url + without_workspace + "/" + str(self.version),
"?api_key=" + self.__api_key,
"&name=YOUR_IMAGE.jpg",
"&overlap=" + str(self.overlap),
"&confidence=" + str(self.confidence),
"&stroke=" + str(self.stroke),
"&labels=" + str(self.labels).lower(),
"&format=" + self.format,
]
)
# add classes parameter to api
if self.classes is not None:
self.api_url += "&classes=" + self.classes
def __str__(self):
# Create the new API URL
splitted = self.id.rsplit("/")
without_workspace = splitted[1]
json_value = {
"id": without_workspace + "/" + str(self.version),
"name": self.name,
"version": self.version,
"classes": self.classes,
"overlap": self.overlap,
"confidence": self.confidence,
"stroke": self.stroke,
"labels": self.labels,
"format": self.format,
"base_url": self.base_url,
}
return json.dumps(json_value, indent=2)