DriverTrac/venv/lib/python3.12/site-packages/jax/_src/scipy/signal.py
2025-11-28 09:08:33 +05:30

1187 lines
46 KiB
Python

# Copyright 2020 The JAX Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import annotations
from collections.abc import Callable, Sequence
from functools import partial
import math
import operator
from typing import Any
import warnings
import numpy as np
from jax._src import api
from jax._src import core
from jax._src import dtypes
from jax._src import lax
from jax._src import numpy as jnp
from jax._src.api_util import _ensure_index_tuple
from jax._src.lax.lax import PrecisionLike
from jax._src.numpy import fft as jnp_fft
from jax._src.numpy import linalg
from jax._src.numpy.util import (
check_arraylike, promote_dtypes_inexact, promote_dtypes_complex)
from jax._src.third_party.scipy import signal_helper
from jax._src.typing import Array, ArrayLike
from jax._src.util import canonicalize_axis, tuple_delete, tuple_insert
def fftconvolve(in1: ArrayLike, in2: ArrayLike, mode: str = "full",
axes: Sequence[int] | None = None) -> Array:
"""
Convolve two N-dimensional arrays using Fast Fourier Transform (FFT).
JAX implementation of :func:`scipy.signal.fftconvolve`.
Args:
in1: left-hand input to the convolution.
in2: right-hand input to the convolution. Must have ``in1.ndim == in2.ndim``.
mode: controls the size of the output. Available operations are:
* ``"full"``: (default) output the full convolution of the inputs.
* ``"same"``: return a centered portion of the ``"full"`` output which
is the same size as ``in1``.
* ``"valid"``: return the portion of the ``"full"`` output which do not
depend on padding at the array edges.
axes: optional sequence of axes along which to apply the convolution.
Returns:
Array containing the convolved result.
See Also:
- :func:`jax.numpy.convolve`: 1D convolution
- :func:`jax.scipy.signal.convolve`: direct convolution
Examples:
A few 1D convolution examples. Because FFT-based convolution is approximate,
We use :func:`jax.numpy.printoptions` below to adjust the printing precision:
>>> x = jnp.array([1, 2, 3, 2, 1])
>>> y = jnp.array([1, 1, 1])
Full convolution uses implicit zero-padding at the edges:
>>> with jax.numpy.printoptions(precision=3):
... print(jax.scipy.signal.fftconvolve(x, y, mode='full'))
[1. 3. 6. 7. 6. 3. 1.]
Specifying ``mode = 'same'`` returns a centered convolution the same size
as the first input:
>>> with jax.numpy.printoptions(precision=3):
... print(jax.scipy.signal.fftconvolve(x, y, mode='same'))
[3. 6. 7. 6. 3.]
Specifying ``mode = 'valid'`` returns only the portion where the two arrays
fully overlap:
>>> with jax.numpy.printoptions(precision=3):
... print(jax.scipy.signal.fftconvolve(x, y, mode='valid'))
[6. 7. 6.]
"""
check_arraylike('fftconvolve', in1, in2)
in1, in2 = promote_dtypes_inexact(in1, in2)
if in1.ndim != in2.ndim:
raise ValueError("in1 and in2 should have the same dimensionality")
if mode not in ["same", "full", "valid"]:
raise ValueError("mode must be one of ['same', 'full', 'valid']")
_fftconvolve = partial(_fftconvolve_unbatched, mode=mode)
if axes is None:
return _fftconvolve(in1, in2)
axes = _ensure_index_tuple(axes)
axes = tuple(canonicalize_axis(ax, in1.ndim) for ax in axes)
mapped_axes = set(range(in1.ndim)) - set(axes)
if any(in1.shape[i] != in2.shape[i] for i in mapped_axes):
raise ValueError(f"mapped axes must have same shape; got {in1.shape=} {in2.shape=} {axes=}")
for ax in sorted(mapped_axes):
_fftconvolve = api.vmap(_fftconvolve, in_axes=ax, out_axes=ax)
return _fftconvolve(in1, in2)
def _fftconvolve_unbatched(in1: Array, in2: Array, mode: str) -> Array:
full_shape = tuple(s1 + s2 - 1 for s1, s2 in zip(in1.shape, in2.shape))
# TODO(jakevdp): potentially use next_fast_len to evaluate with a more efficient shape.
fft_shape = full_shape # tuple(next_fast_len(s) for s in full_shape)
if mode == 'valid':
no_swap = all(s1 >= s2 for s1, s2 in zip(in1.shape, in2.shape))
swap = all(s1 <= s2 for s1, s2 in zip(in1.shape, in2.shape))
if not (no_swap or swap):
raise ValueError("For 'valid' mode, One input must be at least as "
"large as the other in every dimension.")
if swap:
in1, in2 = in2, in1
if jnp.iscomplexobj(in1):
fft, ifft = jnp.fft.fftn, jnp.fft.ifftn
else:
fft, ifft = jnp.fft.rfftn, jnp.fft.irfftn
sp1 = fft(in1, fft_shape)
sp2 = fft(in2, fft_shape)
conv = ifft(sp1 * sp2, fft_shape)
if mode == "full":
out_shape = full_shape
elif mode == "same":
out_shape = in1.shape
elif mode == "valid":
out_shape = tuple(s1 - s2 + 1 for s1, s2 in zip(in1.shape, in2.shape))
else:
raise ValueError(f"Unrecognized {mode=}")
start_indices = tuple((full_size - out_size) // 2
for full_size, out_size in zip(full_shape, out_shape))
return lax.dynamic_slice(conv, start_indices, out_shape)
# Note: we do not reuse the code from jax.numpy.convolve here, because the handling
# of padding differs slightly between the two implementations (particularly for
# mode='same').
def _convolve_nd(in1: Array, in2: Array, mode: str, *, precision: PrecisionLike) -> Array:
if mode not in ["full", "same", "valid"]:
raise ValueError("mode must be one of ['full', 'same', 'valid']")
if in1.ndim != in2.ndim:
raise ValueError("in1 and in2 must have the same number of dimensions")
if in1.size == 0 or in2.size == 0:
raise ValueError(f"zero-size arrays not supported in convolutions, got shapes {in1.shape} and {in2.shape}.")
in1, in2 = promote_dtypes_inexact(in1, in2)
no_swap = all(s1 >= s2 for s1, s2 in zip(in1.shape, in2.shape))
swap = all(s1 <= s2 for s1, s2 in zip(in1.shape, in2.shape))
if not (no_swap or swap):
raise ValueError("One input must be smaller than the other in every dimension.")
shape_o = in2.shape
if swap:
in1, in2 = in2, in1
shape = in2.shape
in2 = jnp.flip(in2)
if mode == 'valid':
padding = [(0, 0) for s in shape]
elif mode == 'same':
padding = [(s - 1 - (s_o - 1) // 2, s - s_o + (s_o - 1) // 2)
for (s, s_o) in zip(shape, shape_o)]
elif mode == 'full':
padding = [(s - 1, s - 1) for s in shape]
strides = tuple(1 for s in shape)
result = lax.conv_general_dilated(in1[None, None], in2[None, None], strides,
padding, precision=precision)
return result[0, 0]
def convolve(in1: Array, in2: Array, mode: str = 'full', method: str = 'auto',
precision: PrecisionLike = None) -> Array:
"""Convolution of two N-dimensional arrays.
JAX implementation of :func:`scipy.signal.convolve`.
Args:
in1: left-hand input to the convolution.
in2: right-hand input to the convolution. Must have ``in1.ndim == in2.ndim``.
mode: controls the size of the output. Available operations are:
* ``"full"``: (default) output the full convolution of the inputs.
* ``"same"``: return a centered portion of the ``"full"`` output which
is the same size as ``in1``.
* ``"valid"``: return the portion of the ``"full"`` output which do not
depend on padding at the array edges.
method: controls the computation method. Options are
* ``"auto"``: (default) always uses the ``"direct"`` method.
* ``"direct"``: lower to :func:`jax.lax.conv_general_dilated`.
* ``"fft"``: compute the result via a fast Fourier transform.
precision: Specify the precision of the computation. Refer to
:class:`jax.lax.Precision` for a description of available values.
Returns:
Array containing the convolved result.
See Also:
- :func:`jax.numpy.convolve`: 1D convolution
- :func:`jax.scipy.signal.convolve2d`: 2D convolution
- :func:`jax.scipy.signal.correlate`: ND correlation
Examples:
A few 1D convolution examples:
>>> x = jnp.array([1, 2, 3, 2, 1])
>>> y = jnp.array([1, 1, 1])
Full convolution uses implicit zero-padding at the edges:
>>> jax.scipy.signal.convolve(x, y, mode='full')
Array([1., 3., 6., 7., 6., 3., 1.], dtype=float32)
Specifying ``mode = 'same'`` returns a centered convolution the same size
as the first input:
>>> jax.scipy.signal.convolve(x, y, mode='same')
Array([3., 6., 7., 6., 3.], dtype=float32)
Specifying ``mode = 'valid'`` returns only the portion where the two arrays
fully overlap:
>>> jax.scipy.signal.convolve(x, y, mode='valid')
Array([6., 7., 6.], dtype=float32)
"""
if method == 'fft':
return fftconvolve(in1, in2, mode=mode)
elif method in ['direct', 'auto']:
return _convolve_nd(in1, in2, mode, precision=precision)
else:
raise ValueError(f"Got {method=}; expected 'auto', 'fft', or 'direct'.")
def convolve2d(in1: Array, in2: Array, mode: str = 'full', boundary: str = 'fill',
fillvalue: float = 0, precision: PrecisionLike = None) -> Array:
"""Convolution of two 2-dimensional arrays.
JAX implementation of :func:`scipy.signal.convolve2d`.
Args:
in1: left-hand input to the convolution. Must have ``in1.ndim == 2``.
in2: right-hand input to the convolution. Must have ``in2.ndim == 2``.
mode: controls the size of the output. Available operations are:
* ``"full"``: (default) output the full convolution of the inputs.
* ``"same"``: return a centered portion of the ``"full"`` output which
is the same size as ``in1``.
* ``"valid"``: return the portion of the ``"full"`` output which do not
depend on padding at the array edges.
boundary: only ``"fill"`` is supported.
fillvalue: only ``0`` is supported.
method: controls the computation method. Options are
* ``"auto"``: (default) always uses the ``"direct"`` method.
* ``"direct"``: lower to :func:`jax.lax.conv_general_dilated`.
* ``"fft"``: compute the result via a fast Fourier transform.
precision: Specify the precision of the computation. Refer to
:class:`jax.lax.Precision` for a description of available values.
Returns:
Array containing the convolved result.
See Also:
- :func:`jax.numpy.convolve`: 1D convolution
- :func:`jax.scipy.signal.convolve`: ND convolution
- :func:`jax.scipy.signal.correlate`: ND correlation
Examples:
A few 2D convolution examples:
>>> x = jnp.array([[1, 2],
... [3, 4]])
>>> y = jnp.array([[2, 1, 1],
... [4, 3, 4],
... [1, 3, 2]])
Full 2D convolution uses implicit zero-padding at the edges:
>>> jax.scipy.signal.convolve2d(x, y, mode='full')
Array([[ 2., 5., 3., 2.],
[10., 22., 17., 12.],
[13., 30., 32., 20.],
[ 3., 13., 18., 8.]], dtype=float32)
Specifying ``mode = 'same'`` returns a centered 2D convolution of the same size
as the first input:
>>> jax.scipy.signal.convolve2d(x, y, mode='same')
Array([[22., 17.],
[30., 32.]], dtype=float32)
Specifying ``mode = 'valid'`` returns only the portion of 2D convolution
where the two arrays fully overlap:
>>> jax.scipy.signal.convolve2d(x, y, mode='valid')
Array([[22., 17.],
[30., 32.]], dtype=float32)
"""
if boundary != 'fill' or fillvalue != 0:
raise NotImplementedError("convolve2d() only supports boundary='fill', fillvalue=0")
if np.ndim(in1) != 2 or np.ndim(in2) != 2:
raise ValueError("convolve2d() only supports 2-dimensional inputs.")
return _convolve_nd(in1, in2, mode, precision=precision)
def correlate(in1: Array, in2: Array, mode: str = 'full', method: str = 'auto',
precision: PrecisionLike = None) -> Array:
"""Cross-correlation of two N-dimensional arrays.
JAX implementation of :func:`scipy.signal.correlate`.
Args:
in1: left-hand input to the cross-correlation.
in2: right-hand input to the cross-correlation. Must have ``in1.ndim == in2.ndim``.
mode: controls the size of the output. Available operations are:
* ``"full"``: (default) output the full cross-correlation of the inputs.
* ``"same"``: return a centered portion of the ``"full"`` output which
is the same size as ``in1``.
* ``"valid"``: return the portion of the ``"full"`` output which do not
depend on padding at the array edges.
method: controls the computation method. Options are
* ``"auto"``: (default) always uses the ``"direct"`` method.
* ``"direct"``: lower to :func:`jax.lax.conv_general_dilated`.
* ``"fft"``: compute the result via a fast Fourier transform.
precision: Specify the precision of the computation. Refer to
:class:`jax.lax.Precision` for a description of available values.
Returns:
Array containing the cross-correlation result.
See Also:
- :func:`jax.numpy.correlate`: 1D cross-correlation
- :func:`jax.scipy.signal.correlate2d`: 2D cross-correlation
- :func:`jax.scipy.signal.convolve`: ND convolution
Examples:
A few 1D correlation examples:
>>> x = jnp.array([1, 2, 3, 2, 1])
>>> y = jnp.array([1, 3, 2])
Full 1D correlation uses implicit zero-padding at the edges:
>>> jax.scipy.signal.correlate(x, y, mode='full')
Array([ 2., 7., 13., 15., 11., 5., 1.], dtype=float32)
Specifying ``mode = 'same'`` returns a centered 1D correlation of the same
size as the first input:
>>> jax.scipy.signal.correlate(x, y, mode='same')
Array([ 7., 13., 15., 11., 5.], dtype=float32)
Specifying ``mode = 'valid'`` returns only the portion of 1D correlation
where the two arrays fully overlap:
>>> jax.scipy.signal.correlate(x, y, mode='valid')
Array([13., 15., 11.], dtype=float32)
"""
return convolve(in1, jnp.flip(in2.conj()), mode, precision=precision, method=method)
def correlate2d(in1: Array, in2: Array, mode: str = 'full', boundary: str = 'fill',
fillvalue: float = 0, precision: PrecisionLike = None) -> Array:
"""Cross-correlation of two 2-dimensional arrays.
JAX implementation of :func:`scipy.signal.correlate2d`.
Args:
in1: left-hand input to the cross-correlation. Must have ``in1.ndim == 2``.
in2: right-hand input to the cross-correlation. Must have ``in2.ndim == 2``.
mode: controls the size of the output. Available operations are:
* ``"full"``: (default) output the full cross-correlation of the inputs.
* ``"same"``: return a centered portion of the ``"full"`` output which
is the same size as ``in1``.
* ``"valid"``: return the portion of the ``"full"`` output which do not
depend on padding at the array edges.
boundary: only ``"fill"`` is supported.
fillvalue: only ``0`` is supported.
method: controls the computation method. Options are
* ``"auto"``: (default) always uses the ``"direct"`` method.
* ``"direct"``: lower to :func:`jax.lax.conv_general_dilated`.
* ``"fft"``: compute the result via a fast Fourier transform.
precision: Specify the precision of the computation. Refer to
:class:`jax.lax.Precision` for a description of available values.
Returns:
Array containing the cross-correlation result.
See Also:
- :func:`jax.numpy.correlate`: 1D cross-correlation
- :func:`jax.scipy.signal.correlate`: ND cross-correlation
- :func:`jax.scipy.signal.convolve`: ND convolution
Examples:
A few 2D correlation examples:
>>> x = jnp.array([[2, 1, 3],
... [1, 3, 1],
... [4, 1, 2]])
>>> y = jnp.array([[1, 3],
... [4, 2]])
Full 2D correlation uses implicit zero-padding at the edges:
>>> jax.scipy.signal.correlate2d(x, y, mode='full')
Array([[ 4., 10., 10., 12.],
[ 8., 15., 24., 7.],
[11., 28., 14., 9.],
[12., 7., 7., 2.]], dtype=float32)
Specifying ``mode = 'same'`` returns a centered 2D correlation of the same
size as the first input:
>>> jax.scipy.signal.correlate2d(x, y, mode='same')
Array([[15., 24., 7.],
[28., 14., 9.],
[ 7., 7., 2.]], dtype=float32)
Specifying ``mode = 'valid'`` returns only the portion of 2D correlation
where the two arrays fully overlap:
>>> jax.scipy.signal.correlate2d(x, y, mode='valid')
Array([[15., 24.],
[28., 14.]], dtype=float32)
"""
if boundary != 'fill' or fillvalue != 0:
raise NotImplementedError("correlate2d() only supports boundary='fill', fillvalue=0")
if np.ndim(in1) != 2 or np.ndim(in2) != 2:
raise ValueError("correlate2d() only supports 2-dimensional inputs.")
swap = all(s1 <= s2 for s1, s2 in zip(in1.shape, in2.shape))
same_shape = all(s1 == s2 for s1, s2 in zip(in1.shape, in2.shape))
if mode == "same":
in1, in2 = jnp.flip(in1), in2.conj()
result = jnp.flip(_convolve_nd(in1, in2, mode, precision=precision))
elif mode == "valid":
if swap and not same_shape:
in1, in2 = jnp.flip(in2), in1.conj()
result = _convolve_nd(in1, in2, mode, precision=precision)
else:
in1, in2 = jnp.flip(in1), in2.conj()
result = jnp.flip(_convolve_nd(in1, in2, mode, precision=precision))
else:
if swap:
in1, in2 = jnp.flip(in2), in1.conj()
result = _convolve_nd(in1, in2, mode, precision=precision).conj()
else:
in1, in2 = jnp.flip(in1), in2.conj()
result = jnp.flip(_convolve_nd(in1, in2, mode, precision=precision))
return result
def detrend(data: ArrayLike, axis: int = -1, type: str = 'linear', bp: int = 0,
overwrite_data: None = None) -> Array:
"""
Remove linear or piecewise linear trends from data.
JAX implementation of :func:`scipy.signal.detrend`.
Args:
data: The input array containing the data to detrend.
axis: The axis along which to detrend. Default is -1 (the last axis).
type: The type of detrending. Can be:
* ``'linear'``: Fit a single linear trend for the entire data.
* ``'constant'``: Remove the mean value of the data.
bp: A sequence of breakpoints. If given, piecewise linear trends
are fit between these breakpoints.
overwrite_data: This argument is not supported by JAX's implementation.
Returns:
The detrended data array.
Examples:
A simple detrend operation in one dimension:
>>> data = jnp.array([1., 4., 8., 8., 9.])
Removing a linear trend from the data:
>>> detrended = jax.scipy.signal.detrend(data)
>>> with jnp.printoptions(precision=3, suppress=True): # suppress float error
... print("Detrended:", detrended)
... print("Underlying trend:", data - detrended)
Detrended: [-1. -0. 2. -0. -1.]
Underlying trend: [ 2. 4. 6. 8. 10.]
Removing a constant trend from the data:
>>> detrended = jax.scipy.signal.detrend(data, type='constant')
>>> with jnp.printoptions(precision=3): # suppress float error
... print("Detrended:", detrended)
... print("Underlying trend:", data - detrended)
Detrended: [-5. -2. 2. 2. 3.]
Underlying trend: [6. 6. 6. 6. 6.]
"""
if overwrite_data is not None:
raise NotImplementedError("overwrite_data argument not implemented.")
if type not in ['constant', 'linear']:
raise ValueError("Trend type must be 'linear' or 'constant'.")
data_arr, = promote_dtypes_inexact(jnp.asarray(data))
if type == 'constant':
return data_arr - data_arr.mean(axis, keepdims=True)
else:
N = data_arr.shape[axis]
# bp is static, so we use np operations to avoid pushing to device.
bp_arr = np.sort(np.unique(np.r_[0, bp, N]))
if bp_arr[0] < 0 or bp_arr[-1] > N:
raise ValueError("Breakpoints must be non-negative and less than length of data along given axis.")
data_arr = jnp.moveaxis(data_arr, axis, 0)
shape = data_arr.shape
data_arr = data_arr.reshape(N, -1)
for m in range(len(bp_arr) - 1):
Npts = bp_arr[m + 1] - bp_arr[m]
A = jnp.vstack([
jnp.ones(Npts, dtype=data_arr.dtype),
jnp.arange(1, Npts + 1, dtype=data_arr.dtype) / Npts.astype(data_arr.dtype)
]).T
sl = slice(bp_arr[m], bp_arr[m + 1])
coef, *_ = linalg.lstsq(A, data_arr[sl])
data_arr = data_arr.at[sl].add(-jnp.matmul(A, coef, precision=lax.Precision.HIGHEST))
return jnp.moveaxis(data_arr.reshape(shape), 0, axis)
def _fft_helper(x: Array, win: Array, detrend_func: Callable[[Array], Array],
nperseg: int, noverlap: int, nfft: int | None, sides: str) -> Array:
"""Calculate windowed FFT in the same way the original SciPy does.
"""
if x.dtype.kind == 'i':
x = x.astype(win.dtype)
*batch_shape, signal_length = x.shape
# Created strided array of data segments
if nperseg == 1 and noverlap == 0:
result = x[..., np.newaxis]
else:
step = nperseg - noverlap
starts = jnp.arange(signal_length - nperseg + 1, step=step)
slice_func = partial(lax.dynamic_slice_in_dim, operand=x, slice_size=nperseg, axis=-1)
result = api.vmap(slice_func, out_axes=-2)(start_index=starts)
# Detrend each data segment individually
result = detrend_func(result)
# Apply window by multiplication
if jnp.iscomplexobj(win):
result, = promote_dtypes_complex(result)
result = win.reshape((1,) * len(batch_shape) + (1, nperseg)) * result
# Perform the fft on last axis. Zero-pads automatically
if sides == 'twosided':
return jnp_fft.fft(result, n=nfft)
else:
return jnp_fft.rfft(result.real, n=nfft)
def odd_ext(x: Array, n: int, axis: int = -1) -> Array:
"""Extends `x` along with `axis` by odd-extension.
This function was previously a part of "scipy.signal.signaltools" but is no
longer exposed.
Args:
x : input array
n : the number of points to be added to the both end
axis: the axis to be extended
"""
if n < 1:
return x
if n > x.shape[axis] - 1:
raise ValueError(
f"The extension length n ({n}) is too big. "
f"It must not exceed x.shape[axis]-1, which is {x.shape[axis] - 1}.")
left_end = lax.slice_in_dim(x, 0, 1, axis=axis)
left_ext = jnp.flip(lax.slice_in_dim(x, 1, n + 1, axis=axis), axis=axis)
right_end = lax.slice_in_dim(x, -1, None, axis=axis)
right_ext = jnp.flip(lax.slice_in_dim(x, -(n + 1), -1, axis=axis), axis=axis)
ext = jnp.concatenate((2 * left_end - left_ext,
x,
2 * right_end - right_ext),
axis=axis)
return ext
def _spectral_helper(x: Array, y: ArrayLike | None, fs: ArrayLike = 1.0,
window: str = 'hann', nperseg: int | None = None,
noverlap: int | None = None, nfft: int | None = None,
detrend_type: bool | str | Callable[[Array], Array] = 'constant',
return_onesided: bool = True, scaling: str = 'density',
axis: int = -1, mode: str = 'psd', boundary: str | None = None,
padded: bool = False) -> tuple[Array, Array, Array]:
"""LAX-backend implementation of `scipy.signal._spectral_helper`.
Unlike the original helper function, `y` can be None for explicitly
indicating auto-spectral (non cross-spectral) computation. In addition to
this, `detrend` argument is renamed to `detrend_type` for avoiding internal
name overlap.
"""
if mode not in ('psd', 'stft'):
raise ValueError(f"Unknown value for mode {mode}, "
"must be one of: ('psd', 'stft')")
def make_pad(mode, **kwargs):
def pad(x, n, axis=-1):
pad_width = [(0, 0) for unused_n in range(x.ndim)]
pad_width[axis] = (n, n)
return jnp.pad(x, pad_width, mode, **kwargs)
return pad
boundary_funcs = {
'even': make_pad('reflect'),
'odd': odd_ext,
'constant': make_pad('edge'),
'zeros': make_pad('constant', constant_values=0.0),
None: lambda x, *args, **kwargs: x
}
# Check/ normalize inputs
if boundary not in boundary_funcs:
raise ValueError(
f"Unknown boundary option '{boundary}', "
f"must be one of: {list(boundary_funcs.keys())}")
axis = core.concrete_or_error(operator.index, axis, "axis of windowed-FFT")
axis = canonicalize_axis(axis, x.ndim)
if y is None:
check_arraylike('spectral_helper', x)
x, = promote_dtypes_inexact(x)
y_arr = x # place-holder for type checking
outershape = tuple_delete(x.shape, axis)
else:
if mode != 'psd':
raise ValueError("two-argument mode is available only when mode=='psd'")
check_arraylike('spectral_helper', x, y)
x, y_arr = promote_dtypes_inexact(x, y)
if x.ndim != y_arr.ndim:
raise ValueError("two-arguments must have the same rank ({x.ndim} vs {y.ndim}).")
# Check if we can broadcast the outer axes together
try:
outershape = jnp.broadcast_shapes(tuple_delete(x.shape, axis),
tuple_delete(y_arr.shape, axis))
except ValueError as err:
raise ValueError('x and y cannot be broadcast together.') from err
result_dtype = dtypes.to_complex_dtype(x.dtype)
freq_dtype = np.finfo(result_dtype).dtype
nperseg_int: int = 0
nfft_int: int = 0
noverlap_int: int = 0
if nperseg is not None: # if specified by user
nperseg_int = core.concrete_or_error(
int, nperseg, "nperseg of windowed-FFT")
if nperseg_int < 1:
raise ValueError('nperseg must be a positive integer')
# parse window; if array like, then set nperseg = win.shape
win, nperseg_int = signal_helper._triage_segments(
window, nperseg if nperseg is None else nperseg_int,
input_length=x.shape[axis], dtype=x.dtype)
if noverlap is None:
noverlap_int = nperseg_int // 2
else:
noverlap_int = core.concrete_or_error(
int, noverlap, "noverlap of windowed-FFT")
if nfft is None:
nfft_int = nperseg_int
else:
nfft_int = core.concrete_or_error(int, nfft, "nfft of windowed-FFT")
# Special cases for size == 0
if y is None:
if x.size == 0:
return jnp.zeros(x.shape, freq_dtype), jnp.zeros(x.shape, freq_dtype), jnp.zeros(x.shape, result_dtype)
else:
if x.size == 0 or y_arr.size == 0:
shape = tuple_insert(outershape, min(x.shape[axis], y_arr.shape[axis]), axis)
return jnp.zeros(shape, freq_dtype), jnp.zeros(shape, freq_dtype), jnp.zeros(shape, result_dtype)
# Move time-axis to the end
x = jnp.moveaxis(x, axis, -1)
if y is not None and y_arr.ndim > 1:
y_arr = jnp.moveaxis(y_arr, axis, -1)
# Check if x and y are the same length, zero-pad if necessary
if y is not None and x.shape[-1] != y_arr.shape[-1]:
if x.shape[-1] < y_arr.shape[-1]:
pad_shape = list(x.shape)
pad_shape[-1] = y_arr.shape[-1] - x.shape[-1]
x = jnp.concatenate((x, jnp.zeros_like(x, shape=pad_shape)), -1)
else:
pad_shape = list(y_arr.shape)
pad_shape[-1] = x.shape[-1] - y_arr.shape[-1]
y_arr = jnp.concatenate((y_arr, jnp.zeros_like(x, shape=pad_shape)), -1)
if nfft_int < nperseg_int:
raise ValueError('nfft must be greater than or equal to nperseg.')
if noverlap_int >= nperseg_int:
raise ValueError('noverlap must be less than nperseg.')
nstep = nperseg_int - noverlap_int
# Apply paddings
if boundary is not None:
ext_func = boundary_funcs[boundary]
x = ext_func(x, nperseg_int // 2, axis=-1)
if y is not None:
y_arr = ext_func(y_arr, nperseg_int // 2, axis=-1)
if padded:
# Pad to integer number of windowed segments
# I.e make x.shape[-1] = nperseg + (nseg-1)*nstep, with integer nseg
nadd = (-(x.shape[-1]-nperseg_int) % nstep) % nperseg_int
x = jnp.concatenate((x, jnp.zeros_like(x, shape=(*x.shape[:-1], nadd))), axis=-1)
if y is not None:
y_arr = jnp.concatenate((y_arr, jnp.zeros_like(x, shape=(*y_arr.shape[:-1], nadd))), axis=-1)
# Handle detrending and window functions
detrend_func: Any
if isinstance(detrend_type, str):
detrend_func = partial(detrend, type=detrend_type, axis=-1)
elif callable(detrend_type):
if axis != -1:
# Wrap this function so that it receives a shape that it could
# reasonably expect to receive.
def detrend_func(d):
d = jnp.moveaxis(d, axis, -1)
d = detrend_type(d)
return jnp.moveaxis(d, -1, axis)
else:
detrend_func = detrend_type
elif not detrend_type:
detrend_func = lambda d: d
else:
raise ValueError(f'Unsupported detrend type: {detrend_type}')
# Determine scale
if scaling == 'density':
scale = 1.0 / (fs * (win * win).sum())
elif scaling == 'spectrum':
scale = 1.0 / win.sum()**2
else:
raise ValueError(f'Unknown scaling: {scaling}')
if mode == 'stft':
scale = jnp.sqrt(scale)
scale, = promote_dtypes_complex(scale)
# Determine onesided/ two-sided
if return_onesided:
sides = 'onesided'
if jnp.iscomplexobj(x) or jnp.iscomplexobj(y):
sides = 'twosided'
warnings.warn('Input data is complex, switching to '
'return_onesided=False')
else:
sides = 'twosided'
if sides == 'twosided':
freqs = jnp_fft.fftfreq(nfft_int, 1/fs, dtype=freq_dtype)
elif sides == 'onesided':
freqs = jnp_fft.rfftfreq(nfft_int, 1/fs, dtype=freq_dtype)
# Perform the windowed FFTs
result = _fft_helper(x, win, detrend_func,
nperseg_int, noverlap_int, nfft_int, sides)
if y is not None:
# All the same operations on the y data
result_y = _fft_helper(y_arr, win, detrend_func,
nperseg_int, noverlap_int, nfft_int, sides)
result = jnp.conjugate(result) * result_y
elif mode == 'psd':
result = jnp.conjugate(result) * result
result *= scale
if sides == 'onesided' and mode == 'psd':
end = None if nfft_int % 2 else -1
result = result.at[..., 1:end].mul(2)
time = jnp.arange(nperseg_int / 2, x.shape[-1] - nperseg_int / 2 + 1,
nperseg_int - noverlap_int, dtype=freq_dtype) / fs
if boundary is not None:
time -= (nperseg_int / 2) / fs
result = result.astype(result_dtype)
# All imaginary parts are zero anyways
if y is None and mode != 'stft':
result = result.real
# Move frequency axis back to axis where the data came from
result = jnp.moveaxis(result, -1, axis)
return freqs, time, result
def stft(x: Array, fs: ArrayLike = 1.0, window: str = 'hann', nperseg: int = 256,
noverlap: int | None = None, nfft: int | None = None,
detrend: bool = False, return_onesided: bool = True, boundary: str | None = 'zeros',
padded: bool = True, axis: int = -1) -> tuple[Array, Array, Array]:
"""
Compute the short-time Fourier transform (STFT).
JAX implementation of :func:`scipy.signal.stft`.
Args:
x: Array representing a time series of input values.
fs: Sampling frequency of the time series (default: 1.0).
window: Data tapering window to apply to each segment. Can be a window function name,
a tuple specifying a window length and function, or an array (default: ``'hann'``).
nperseg: Length of each segment (default: 256).
noverlap: Number of points to overlap between segments (default: ``nperseg // 2``).
nfft: Length of the FFT used, if a zero-padded FFT is desired. If ``None`` (default),
the FFT length is ``nperseg``.
detrend: Specifies how to detrend each segment. Can be ``False`` (default: no detrending),
``'constant'`` (remove mean), ``'linear'`` (remove linear trend), or a callable
accepting a segment and returning a detrended segment.
return_onesided: If True (default), return a one-sided spectrum for real inputs.
If False, return a two-sided spectrum.
boundary: Specifies whether the input signal is extended at both ends, and how.
Options are ``None`` (no extension), ``'zeros'`` (default), ``'even'``, ``'odd'``,
or ``'constant'``.
padded: Specifies whether the input signal is zero-padded at the end to make its
length a multiple of `nperseg`. If True (default), the padded signal length is
the next multiple of ``nperseg``.
axis: Axis along which the STFT is computed; the default is over the last axis (-1).
Returns:
A length-3 tuple of arrays ``(f, t, Zxx)``. ``f`` is the Array of sample frequencies.
``t`` is the Array of segment times, and ``Zxx`` is the STFT of ``x``.
See Also:
:func:`jax.scipy.signal.istft`: inverse short-time Fourier transform.
"""
return _spectral_helper(x, None, fs, window, nperseg, noverlap,
nfft, detrend, return_onesided,
scaling='spectrum', axis=axis,
mode='stft', boundary=boundary,
padded=padded)
def csd(x: Array, y: ArrayLike | None, fs: ArrayLike = 1.0, window: str = 'hann',
nperseg: int | None = None, noverlap: int | None = None,
nfft: int | None = None, detrend: str = 'constant',
return_onesided: bool = True, scaling: str = 'density',
axis: int = -1, average: str = 'mean') -> tuple[Array, Array]:
"""
Estimate cross power spectral density (CSD) using Welch's method.
This is a JAX implementation of :func:`scipy.signal.csd`. It is similar to
:func:`jax.scipy.signal.welch`, but it operates on two input signals and
estimates their cross-spectral density instead of the power spectral density
(PSD).
Args:
x: Array representing a time series of input values.
y: Array representing the second time series of input values, the same length as ``x``
along the specified ``axis``. If not specified, then assume ``y = x`` and compute
the PSD ``Pxx`` of ``x`` via Welch's method.
fs: Sampling frequency of the inputs (default: 1.0).
window: Data tapering window to apply to each segment. Can be a window function name,
a tuple specifying a window length and function, or an array (default: ``'hann'``).
nperseg: Length of each segment (default: 256).
noverlap: Number of points to overlap between segments (default: ``nperseg // 2``).
nfft: Length of the FFT used, if a zero-padded FFT is desired. If ``None`` (default),
the FFT length is ``nperseg``.
detrend: Specifies how to detrend each segment. Can be ``False`` (default: no detrending),
``'constant'`` (remove mean), ``'linear'`` (remove linear trend), or a callable
accepting a segment and returning a detrended segment.
return_onesided: If True (default), return a one-sided spectrum for real inputs.
If False, return a two-sided spectrum.
scaling: Selects between computing the power spectral density (``'density'``, default)
or the power spectrum (``'spectrum'``)
axis: Axis along which the CSD is computed (default: -1).
average: The type of averaging to use on the periodograms; one of ``'mean'`` (default)
or ``'median'``.
Returns:
A length-2 tuple of arrays ``(f, Pxy)``. ``f`` is the array of sample frequencies,
and ``Pxy`` is the cross spectral density of `x` and `y`
Notes:
The original SciPy function exhibits slightly different behavior between
``csd(x, x)`` and ``csd(x, x.copy())``. The LAX-backend version is designed
to follow the latter behavior. To replicate the former, call this function
function as ``csd(x, None)``.
See Also:
- :func:`jax.scipy.signal.welch`: Power spectral density.
- :func:`jax.scipy.signal.stft`: Short-time Fourier transform.
"""
freqs, _, Pxy = _spectral_helper(x, y, fs, window, nperseg, noverlap, nfft,
detrend, return_onesided, scaling, axis,
mode='psd')
if y is not None:
Pxy = Pxy + 0j # Ensure complex output when x is not y
# Average over windows.
if Pxy.ndim >= 2 and Pxy.size > 0:
if Pxy.shape[-1] > 1:
if average == 'median':
bias = signal_helper._median_bias(Pxy.shape[-1]).astype(Pxy.dtype)
if jnp.iscomplexobj(Pxy):
Pxy = (jnp.median(jnp.real(Pxy), axis=-1)
+ 1j * jnp.median(jnp.imag(Pxy), axis=-1))
else:
Pxy = jnp.median(Pxy, axis=-1)
Pxy /= bias
elif average == 'mean':
Pxy = Pxy.mean(axis=-1)
else:
raise ValueError(f'average must be "median" or "mean", got {average}')
else:
Pxy = jnp.reshape(Pxy, Pxy.shape[:-1])
return freqs, Pxy
def welch(x: Array, fs: ArrayLike = 1.0, window: str = 'hann',
nperseg: int | None = None, noverlap: int | None = None,
nfft: int | None = None, detrend: str = 'constant',
return_onesided: bool = True, scaling: str = 'density',
axis: int = -1, average: str = 'mean') -> tuple[Array, Array]:
"""
Estimate power spectral density (PSD) using Welch's method.
This is a JAX implementation of :func:`scipy.signal.welch`. It divides the
input signal into overlapping segments, computes the modified periodogram for
each segment, and averages the results to obtain a smoother estimate of the PSD.
Args:
x: Array representing a time series of input values.
fs: Sampling frequency of the inputs (default: 1.0).
window: Data tapering window to apply to each segment. Can be a window function name,
a tuple specifying a window length and function, or an array (default: ``'hann'``).
nperseg: Length of each segment (default: 256).
noverlap: Number of points to overlap between segments (default: ``nperseg // 2``).
nfft: Length of the FFT used, if a zero-padded FFT is desired. If ``None`` (default),
the FFT length is ``nperseg``.
detrend: Specifies how to detrend each segment. Can be ``False`` (default: no detrending),
``'constant'`` (remove mean), ``'linear'`` (remove linear trend), or a callable
accepting a segment and returning a detrended segment.
return_onesided: If True (default), return a one-sided spectrum for real inputs.
If False, return a two-sided spectrum.
scaling: Selects between computing the power spectral density (``'density'``, default)
or the power spectrum (``'spectrum'``)
axis: Axis along which the PSD is computed (default: -1).
average: The type of averaging to use on the periodograms; one of ``'mean'`` (default)
or ``'median'``.
Returns:
A length-2 tuple of arrays ``(f, Pxx)``. ``f`` is the array of sample frequencies,
and ``Pxx`` is the power spectral density of ``x``.
See Also:
- :func:`jax.scipy.signal.csd`: Cross power spectral density.
- :func:`jax.scipy.signal.stft`: Short-time Fourier transform.
"""
freqs, Pxx = csd(x, None, fs=fs, window=window, nperseg=nperseg,
noverlap=noverlap, nfft=nfft, detrend=detrend,
return_onesided=return_onesided, scaling=scaling,
axis=axis, average=average)
return freqs, Pxx.real
def _overlap_and_add(x: Array, step_size: int) -> Array:
"""Utility function compatible with tf.signal.overlap_and_add.
Args:
x: An array with `(..., frames, frame_length)`-shape.
step_size: An integer denoting overlap offsets. Must be less than
`frame_length`.
Returns:
An array with `(..., output_size)`-shape containing overlapped signal.
"""
check_arraylike("_overlap_and_add", x)
step_size = core.concrete_or_error(
int, step_size, "step_size for overlap_and_add")
if x.ndim < 2:
raise ValueError('Input must have (..., frames, frame_length) shape.')
*batch_shape, nframes, segment_len = x.shape
flat_batchsize = math.prod(batch_shape)
x = x.reshape((flat_batchsize, nframes, segment_len))
output_size = step_size * (nframes - 1) + segment_len
nstep_per_segment = 1 + (segment_len - 1) // step_size
# Here, we use shorter notation for axes.
# B: batch_size, N: nframes, S: nstep_per_segment,
# T: segment_len divided by S
padded_segment_len = nstep_per_segment * step_size
x = jnp.pad(x, ((0, 0), (0, 0), (0, padded_segment_len - segment_len)))
x = x.reshape((flat_batchsize, nframes, nstep_per_segment, step_size))
# For obtaining shifted signals, this routine reinterprets flattened array
# with a shrunken axis. With appropriate truncation/ padding, this operation
# pushes the last padded elements of the previous row to the head of the
# current row.
# See implementation of `overlap_and_add` in Tensorflow for details.
x = x.transpose((0, 2, 1, 3)) # x: (B, S, N, T)
x = jnp.pad(x, ((0, 0), (0, 0), (0, nframes), (0, 0))) # x: (B, S, N*2, T)
shrunken = x.shape[2] - 1
x = x.reshape((flat_batchsize, -1))
x = x[:, :(nstep_per_segment * shrunken * step_size)]
x = x.reshape((flat_batchsize, nstep_per_segment, shrunken * step_size))
# Finally, sum shifted segments, and truncate results to the output_size.
x = x.sum(axis=1)[:, :output_size]
return x.reshape(tuple(batch_shape) + (-1,))
def istft(Zxx: Array, fs: ArrayLike = 1.0, window: str = 'hann',
nperseg: int | None = None, noverlap: int | None = None,
nfft: int | None = None, input_onesided: bool = True,
boundary: bool = True, time_axis: int = -1,
freq_axis: int = -2) -> tuple[Array, Array]:
"""
Perform the inverse short-time Fourier transform (ISTFT).
JAX implementation of :func:`scipy.signal.istft`; computes the inverse of
:func:`jax.scipy.signal.stft`.
Args:
Zxx: STFT of the signal to be reconstructed.
fs: Sampling frequency of the time series (default: 1.0)
window: Data tapering window to apply to each segment. Can be a window function name,
a tuple specifying a window length and function, or an array (default: ``'hann'``).
nperseg: Number of data points per segment in the STFT. If ``None`` (default), the
value is determined from the size of ``Zxx``.
noverlap: Number of points to overlap between segments (default: ``nperseg // 2``).
nfft: Number of FFT points used in the STFT. If ``None`` (default), the
value is determined from the size of ``Zxx``.
input_onesided: If True (default), interpret the input as a one-sided STFT
(positive frequencies only). If False, interpret the input as a two-sided STFT.
boundary: If True (default), it is assumed that the input signal was extended at
its boundaries by ``stft``. If `False`, the input signal is assumed to have been truncated at the boundaries by `stft`.
time_axis: Axis in `Zxx` corresponding to time segments (default: -1).
freq_axis: Axis in `Zxx` corresponding to frequency bins (default: -2).
Returns:
A length-2 tuple of arrays ``(t, x)``. ``t`` is the Array of signal times, and ``x``
is the reconstructed time series.
See Also:
:func:`jax.scipy.signal.stft`: short-time Fourier transform.
Examples:
Demonstrate that this gives the inverse of :func:`~jax.scipy.signal.stft`:
>>> x = jnp.array([1., 2., 3., 2., 1., 0., 1., 2.])
>>> f, t, Zxx = jax.scipy.signal.stft(x, nperseg=4)
>>> print(Zxx) # doctest: +SKIP
[[ 1. +0.j 2.5+0.j 1. +0.j 1. +0.j 0.5+0.j ]
[-0.5+0.5j -1.5+0.j -0.5-0.5j -0.5+0.5j 0. -0.5j]
[ 0. +0.j 0.5+0.j 0. +0.j 0. +0.j -0.5+0.j ]]
>>> t, x_reconstructed = jax.scipy.signal.istft(Zxx)
>>> print(x_reconstructed)
[1. 2. 3. 2. 1. 0. 1. 2.]
"""
# Input validation
check_arraylike("istft", Zxx)
if Zxx.ndim < 2:
raise ValueError('Input stft must be at least 2d!')
freq_axis = canonicalize_axis(freq_axis, Zxx.ndim)
time_axis = canonicalize_axis(time_axis, Zxx.ndim)
if freq_axis == time_axis:
raise ValueError('Must specify differing time and frequency axes!')
Zxx = jnp.asarray(Zxx, dtype=dtypes.canonicalize_dtype(
dtypes.to_complex_dtype(Zxx.dtype)))
n_default = (2 * (Zxx.shape[freq_axis] - 1) if input_onesided
else Zxx.shape[freq_axis])
nperseg_int = core.concrete_or_error(int, nperseg or n_default,
"nperseg: segment length of STFT")
if nperseg_int < 1:
raise ValueError('nperseg must be a positive integer')
nfft_int: int = 0
if nfft is None:
nfft_int = n_default
if input_onesided and nperseg_int == n_default + 1:
nfft_int += 1 # Odd nperseg, no FFT padding
else:
nfft_int = core.concrete_or_error(int, nfft, "nfft of STFT")
if nfft_int < nperseg_int:
raise ValueError(
f'FFT length ({nfft_int}) must be longer than nperseg ({nperseg_int}).')
noverlap_int = core.concrete_or_error(
int, noverlap or nperseg_int // 2, "noverlap of STFT")
if noverlap_int >= nperseg_int:
raise ValueError('noverlap must be less than nperseg.')
nstep = nperseg_int - noverlap_int
# Rearrange axes if necessary
if time_axis != Zxx.ndim - 1 or freq_axis != Zxx.ndim - 2:
outer_idxs = tuple(
idx for idx in range(Zxx.ndim) if idx not in {time_axis, freq_axis})
Zxx = jnp.transpose(Zxx, outer_idxs + (freq_axis, time_axis))
# Perform IFFT
ifunc = jnp_fft.irfft if input_onesided else jnp_fft.ifft
# xsubs: [..., T, N], N is the number of frames, T is the frame length.
xsubs = ifunc(Zxx, axis=-2, n=nfft)[..., :nperseg_int, :]
# Get window as array
if isinstance(window, str) and window == 'hann':
# Implement the default case without scipy
win = jnp.array([1.0]) if nperseg_int == 1 else jnp.sin(jnp.linspace(0, np.pi, nperseg_int, endpoint=False)) ** 2
win = win.astype(xsubs.dtype)
elif isinstance(window, (str, tuple)):
# TODO(jakevdp): implement get_window() in JAX to remove optional scipy dependency
try:
from scipy.signal import get_window # pytype: disable=import-error
except ImportError as err:
raise ImportError(f"scipy must be available to use {window=}") from err
win = get_window(window, nperseg_int)
win = jnp.array(win, dtype=xsubs.dtype)
else:
win = jnp.asarray(window)
if len(win.shape) != 1:
raise ValueError('window must be 1-D')
if win.shape[0] != nperseg_int:
raise ValueError(f'window must have length of {nperseg_int}')
xsubs *= win.sum() # This takes care of the 'spectrum' scaling
# make win broadcastable over xsubs
win = lax.expand_dims(win, (*range(xsubs.ndim - 2), -1))
x = _overlap_and_add((xsubs * win).swapaxes(-2, -1), nstep)
win_squared = jnp.repeat((win * win), xsubs.shape[-1], axis=-1)
norm = _overlap_and_add(win_squared.swapaxes(-2, -1), nstep)
# Remove extension points
if boundary:
x = x[..., nperseg_int//2:-(nperseg_int//2)]
norm = norm[..., nperseg_int//2:-(nperseg_int//2)]
x /= jnp.where(norm > 1e-10, norm, 1.0)
# Put axes back
if x.ndim > 1:
if time_axis != Zxx.ndim - 1:
if freq_axis < time_axis:
time_axis -= 1
x = jnp.moveaxis(x, -1, time_axis)
time = jnp.arange(x.shape[0], dtype=np.finfo(x.dtype).dtype) / fs
return time, x