DriverTrac/venv/lib/python3.12/site-packages/narwhals/_arrow/expr.py
2025-11-28 09:08:33 +05:30

232 lines
9.1 KiB
Python

from __future__ import annotations
from typing import TYPE_CHECKING, Any, cast
import pyarrow as pa
import pyarrow.compute as pc
from narwhals._arrow.series import ArrowSeries
from narwhals._compliant import EagerExpr
from narwhals._expression_parsing import evaluate_nodes, evaluate_output_names_and_aliases
from narwhals._utils import (
Implementation,
generate_temporary_column_name,
not_implemented,
)
from narwhals.functions import col as nw_col
if TYPE_CHECKING:
from collections.abc import Sequence
from typing_extensions import Self
from narwhals._arrow.dataframe import ArrowDataFrame
from narwhals._arrow.namespace import ArrowNamespace
from narwhals._compliant.typing import AliasNames, EvalNames, EvalSeries
from narwhals._utils import Version, _LimitedContext
class ArrowExpr(EagerExpr["ArrowDataFrame", ArrowSeries]):
_implementation: Implementation = Implementation.PYARROW
def __init__(
self,
call: EvalSeries[ArrowDataFrame, ArrowSeries],
*,
evaluate_output_names: EvalNames[ArrowDataFrame],
alias_output_names: AliasNames | None,
version: Version,
implementation: Implementation = Implementation.PYARROW,
) -> None:
self._call = call
self._evaluate_output_names = evaluate_output_names
self._alias_output_names = alias_output_names
self._version = version
@classmethod
def from_column_names(
cls: type[Self],
evaluate_column_names: EvalNames[ArrowDataFrame],
/,
*,
context: _LimitedContext,
) -> Self:
def func(df: ArrowDataFrame) -> list[ArrowSeries]:
try:
return [
ArrowSeries(
df.native[column_name], name=column_name, version=df._version
)
for column_name in evaluate_column_names(df)
]
except KeyError as e:
if error := df._check_columns_exist(evaluate_column_names(df)):
raise error from e
raise
return cls(
func,
evaluate_output_names=evaluate_column_names,
alias_output_names=None,
version=context._version,
)
@classmethod
def from_column_indices(cls, *column_indices: int, context: _LimitedContext) -> Self:
def func(df: ArrowDataFrame) -> list[ArrowSeries]:
tbl = df.native
cols = df.columns
return [
ArrowSeries.from_native(tbl[i], name=cols[i], context=df)
for i in column_indices
]
return cls(
func,
evaluate_output_names=cls._eval_names_indices(column_indices),
alias_output_names=None,
version=context._version,
)
def __narwhals_namespace__(self) -> ArrowNamespace:
from narwhals._arrow.namespace import ArrowNamespace
return ArrowNamespace(version=self._version)
def _reuse_series_extra_kwargs(
self, *, returns_scalar: bool = False
) -> dict[str, Any]:
return {"_return_py_scalar": False} if returns_scalar else {}
def _over_without_partition_by(self, order_by: Sequence[str]) -> Self:
# e.g. `nw.col('a').cum_sum().order_by(key)`
# which we can always easily support, as it doesn't require grouping.
assert order_by # noqa: S101
meta = self._metadata
def func(df: ArrowDataFrame) -> Sequence[ArrowSeries]:
token = generate_temporary_column_name(8, df.columns)
df = df.with_row_index(token, order_by=None).sort(
*order_by, descending=False, nulls_last=False
)
results = self(df.drop([token], strict=True))
if meta is not None and meta.is_scalar_like:
# We need to broadcast the results to the original size, since
# `over` is a length-preserving operation.
size = len(df)
return [s._with_native(pa.repeat(s.item(), size)) for s in results]
# TODO(marco): is there a way to do this efficiently without
# doing 2 sorts? Here we're sorting the dataframe and then
# again calling `sort_indices`. `ArrowSeries.scatter` would also sort.
sorting_indices = pc.sort_indices(df.get_column(token).native)
return [s._with_native(s.native.take(sorting_indices)) for s in results]
return self.__class__(
func,
evaluate_output_names=self._evaluate_output_names,
alias_output_names=self._alias_output_names,
version=self._version,
)
def over(self, partition_by: Sequence[str], order_by: Sequence[str]) -> Self:
if not partition_by:
assert order_by # noqa: S101
return self._over_without_partition_by(order_by)
# We have something like prev.leaf().over(...) (e.g. `nw.col('a').sum().over('b')`), where:
# - `prev` must be elementwise (in the example: `nw.col('a')`)
# - `leaf` must be an aggregation (in the example: `sum`)
#
# We first evaluate `prev` as-is, and then evaluate `leaf().over(...)`` by doing a `group_by`.
meta = self._metadata
if partition_by and (
not meta.current_node.kind.is_scalar_like
or (meta.prev is not None and not meta.prev.is_elementwise)
):
msg = (
"Only elementary aggregations are supported for `.over` in PyArrow backend "
"when `partition_by` is specified.\n\n"
"Please see: "
"https://narwhals-dev.github.io/narwhals/concepts/improve_group_by_operation/"
)
raise NotImplementedError(msg)
nodes = list(reversed(list(self._metadata.iter_nodes_reversed())))
def func(df: ArrowDataFrame) -> Sequence[ArrowSeries]:
plx = self.__narwhals_namespace__()
if meta.prev is not None:
df = df.with_columns(cast("ArrowExpr", evaluate_nodes(nodes[:-1], plx)))
_, aliases = evaluate_output_names_and_aliases(self, df, [])
leaf_ce = cast(
"ArrowExpr",
nw_col(*aliases)._append_node(nodes[-1])._to_compliant_expr(plx),
)
else:
_, aliases = evaluate_output_names_and_aliases(self, df, [])
leaf_ce = self
if order_by:
df = df.sort(*order_by, descending=False, nulls_last=False)
if overlap := set(aliases).intersection(partition_by):
# E.g. `df.select(nw.all().sum().over('a'))`. This is well-defined,
# we just don't support it yet.
msg = (
f"Column names {overlap} appear in both expression output names and in `over` keys.\n"
"This is not yet supported."
)
raise NotImplementedError(msg)
if not any(
ca.null_count > 0 for ca in df.simple_select(*partition_by).native.columns
):
tmp = df.group_by(partition_by, drop_null_keys=False).agg(leaf_ce)
tmp = df.simple_select(*partition_by).join(
tmp,
how="left",
left_on=partition_by,
right_on=partition_by,
suffix="_right",
)
return [tmp.get_column(alias) for alias in aliases]
if len(partition_by) == 1:
plx = self.__narwhals_namespace__()
tmp_name = generate_temporary_column_name(8, df.columns)
dict_array = (
df.native.column(partition_by[0])
.dictionary_encode("encode")
.combine_chunks()
)
indices = dict_array.indices # type: ignore[attr-defined]
indices_expr = plx._expr._from_series(
plx._series.from_native(indices, context=plx)
)
table_encoded = df.with_columns(indices_expr.alias(tmp_name))
windowed = table_encoded.group_by([tmp_name], drop_null_keys=False).agg(
leaf_ce
)
ret = (
table_encoded.simple_select(tmp_name)
.join(
windowed,
left_on=[tmp_name],
right_on=[tmp_name],
how="inner",
suffix="_right",
)
.drop([tmp_name], strict=False)
)
return [ret.get_column(alias) for alias in aliases]
msg = "`over` with `partition_by` and multiple columns which contains null values is not yet supported for PyArrow"
raise NotImplementedError(msg)
return self.__class__(
func,
evaluate_output_names=self._evaluate_output_names,
alias_output_names=self._alias_output_names,
version=self._version,
)
ewm_mean = not_implemented()