DriverTrac/venv/lib/python3.12/site-packages/tests/models/test_semantic_segmentation.py
2025-11-28 09:08:33 +05:30

129 lines
4.8 KiB
Python

import unittest
import responses
from requests.exceptions import HTTPError
from roboflow.config import SEMANTIC_SEGMENTATION_URL
from roboflow.models.semantic_segmentation import SemanticSegmentationModel
from roboflow.util.prediction import PredictionGroup
MOCK_RESPONSE = {
"segmentation_mask": "iVBORw0KGgoAAAANSUhEUgAAAgAAAAIACAAAAADRE4smAAACjElEQVR4nO3bz"
"XKbMBiGUanT+79ldVHXwSmmFmJGfcU5i8SZbDR8DzL4pxQAAAAAAAAAAAAAAA"
"AAAAAAAAAAAAAAAAAAgKXUOnsFTGX+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA"
"AAAAAAAAAAAAAAMuosxewklpKm72GXj9mLyBf/etBEgGMqqVGTv5BADcngEF1"
"51GSn7MXkO116HFXgMUOMCZ//gK4TuT8BTCkvfyKJICbE8CQ9vyRSgBDMm/9t"
"gQwLHoDWCDhaWopj+nXkpuBHeBT9dtL/t9OndQzSQCf2j/Fa8mdfSlFAD3a3l"
"+H20IAAXzszbN83fw3b/4COO9PEIFT3xDAeW2zJ6TeBHg7eEjLvgUsxQ4wrGX"
"PXwDDoscvgHE1+ypQAGfU/U8CJpaQuObpvt4FeBy/9vIoigD6fR2z9nwZaPty"
"UBQB9Ds6ZnEFuAa4OQF0O9w043ZUAdxcXLGT/eN4xV0C2AH6LDd/AVwpcP4Cu"
"FDi/AVwocjrKQF0iTzJDwmgz3IFCKDTagUI4OYEcJ3IzUEAnSIv9Q/4VHCXd+"
"NvsWGkrnum9xUE8hTQL3LQ7wjghJUKEMBlMrMQwBm7s868nMpc9X/iefB+fzc"
"8cgtwGzjg8XWAyMFzOZspAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA"
"AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA"
"AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA"
"AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC"
"wil+AQDJrnsYcnwAAAABJRU5ErkJggg==",
"class_map": {"0": "background", "1": "object"},
"image": {"width": 800, "height": 600},
}
class TestSemanticSegmentation(unittest.TestCase):
api_key = "my-api-key"
workspace = "roboflow"
dataset_id = "test-123"
version = "23"
api_url = f"https://segment.roboflow.com/{dataset_id}/{version}"
_default_params = {"api_key": api_key, "confidence": "50"}
version_id = f"{workspace}/{dataset_id}/{version}"
def test_init_sets_attributes(self):
instance = SemanticSegmentationModel(self.api_key, self.version_id)
self.assertEqual(instance.id, self.version_id)
self.assertEqual(
instance.api_url,
f"{SEMANTIC_SEGMENTATION_URL}/{self.dataset_id}/{self.version}",
)
@responses.activate
def test_predict_returns_prediction_group(self):
image_path = "tests/images/rabbit.JPG"
instance = SemanticSegmentationModel(self.api_key, self.version_id)
responses.add(responses.POST, self.api_url, json=MOCK_RESPONSE)
group = instance.predict(image_path)
self.assertIsInstance(group, PredictionGroup)
@responses.activate
def test_predict_with_local_image_request(self):
image_path = "tests/images/rabbit.JPG"
instance = SemanticSegmentationModel(self.api_key, self.version_id)
responses.add(responses.POST, self.api_url, json=MOCK_RESPONSE)
instance.predict(image_path)
request = responses.calls[0].request
self.assertEqual(request.method, "POST")
self.assertRegex(request.url, rf"^{self.api_url}")
self.assertDictEqual(request.params, self._default_params)
self.assertIsNotNone(request.body)
@responses.activate
def test_predict_with_hosted_image_request(self):
image_path = "https://example.com/raccoon.JPG"
expected_params = {
**self._default_params,
"image": image_path,
}
instance = SemanticSegmentationModel(self.api_key, self.version_id)
# Mock the library validating that the URL is valid before sending to the API
responses.add(responses.HEAD, image_path)
responses.add(responses.POST, self.api_url, json=MOCK_RESPONSE)
instance.predict(image_path)
request = responses.calls[1].request
self.assertEqual(request.method, "POST")
self.assertRegex(request.url, rf"^{self.api_url}")
self.assertDictEqual(request.params, expected_params)
self.assertIsNone(request.body)
@responses.activate
def test_predict_with_confidence_request(self):
confidence = "100"
image_path = "tests/images/rabbit.JPG"
expected_params = {**self._default_params, "confidence": confidence}
instance = SemanticSegmentationModel(self.api_key, self.version_id)
responses.add(responses.POST, self.api_url, json=MOCK_RESPONSE)
instance.predict(image_path, confidence=confidence)
request = responses.calls[0].request
self.assertEqual(request.method, "POST")
self.assertRegex(request.url, rf"^{self.api_url}")
self.assertDictEqual(request.params, expected_params)
self.assertIsNotNone(request.body)
@responses.activate
def test_predict_with_non_200_response_raises_http_error(self):
image_path = "tests/images/rabbit.JPG"
responses.add(responses.POST, self.api_url, status=403)
instance = SemanticSegmentationModel(self.api_key, self.version_id)
with self.assertRaises(HTTPError):
instance.predict(image_path)