277 lines
11 KiB
Python
277 lines
11 KiB
Python
# Copyright 2024 The HuggingFace Team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from collections import defaultdict
|
|
from typing import TYPE_CHECKING
|
|
|
|
from ..integrations import prepare_for_hqq_linear
|
|
from ..utils import is_hqq_available, is_torch_available, logging
|
|
from .base import HfQuantizer
|
|
from .quantizers_utils import get_module_from_name
|
|
|
|
|
|
if TYPE_CHECKING:
|
|
from ..modeling_utils import PreTrainedModel
|
|
|
|
|
|
if is_torch_available():
|
|
import torch
|
|
|
|
if is_hqq_available():
|
|
from hqq.core.quantize import HQQLinear
|
|
|
|
# This is a compatibility hack. HQQ-quantized linear layers do not have a `weight` attribute,
|
|
# but some models attempt to access `weight.dtype` during the forward pass. To prevent runtime errors,
|
|
# we patch HQQLinear with a dummy `weight` property that returns an empty tensor with the correct dtype and device.
|
|
@property
|
|
def weight(self):
|
|
return torch.empty(0, dtype=self.compute_dtype, device=self.device)
|
|
|
|
HQQLinear.weight = weight
|
|
|
|
logger = logging.get_logger(__name__)
|
|
|
|
|
|
class HqqHfQuantizer(HfQuantizer):
|
|
"""
|
|
HQQ quantizer base HF class.
|
|
nn.Linear modules are first tagged with quant_config in _process_model_before_weight_loading().
|
|
"""
|
|
|
|
use_keep_in_fp32_modules = False
|
|
requires_parameters_quantization = True
|
|
requires_calibration = False
|
|
required_packages = ["hqq"]
|
|
|
|
def __init__(self, quantization_config, **kwargs):
|
|
if not is_hqq_available():
|
|
raise ImportError(
|
|
"A valid HQQ version (>=0.2.1) is not available. Please follow the instructions to install it: `https://github.com/mobiusml/hqq/`."
|
|
)
|
|
super().__init__(quantization_config, **kwargs)
|
|
self.dtype = None
|
|
self.using_multi_gpu = False
|
|
# Keys that are serialized specifically by hqq
|
|
self.hqq_keys = HQQLinear(None, None).state_dict_keys() - {"bias"}
|
|
|
|
if kwargs.get("from_tf", False) or kwargs.get("from_flax", False):
|
|
raise ValueError(
|
|
"Converting weights from tf/flax weights is currently not supported, please make"
|
|
" sure the weights are in PyTorch format."
|
|
)
|
|
|
|
if self.dtype is None:
|
|
if "dtype" in kwargs:
|
|
self.dtype = kwargs["dtype"]
|
|
else:
|
|
self.dtype = torch.float32
|
|
logger.info("Setting dtype to torch.float32 as the default value since it was not specified.")
|
|
|
|
device_map = kwargs.get("device_map")
|
|
if isinstance(device_map, dict):
|
|
if "cpu" in device_map.values() or "disk" in device_map.values():
|
|
raise ValueError(
|
|
"You are attempting to use an HQQ model with a device_map that contains a CPU or disk device."
|
|
" This is not supported. Please remove the CPU or disk device from the device_map."
|
|
)
|
|
else:
|
|
self.using_multi_gpu = len(set(device_map.values())) > 1
|
|
|
|
def update_missing_keys(
|
|
self, model: "PreTrainedModel", missing_keys: list[str], prefix: str, **kwargs
|
|
) -> list[str]:
|
|
if self.pre_quantized:
|
|
return [key for key in missing_keys if ("weight" not in key)]
|
|
else:
|
|
return missing_keys
|
|
|
|
# Adds missing keys for HQQLinear modules that are loaded but the model with initialized with torch.nn.Linear
|
|
def update_expected_keys(
|
|
self, model: "PreTrainedModel", expected_keys: list[str], loaded_keys: list[str]
|
|
) -> list[str]:
|
|
if not self.pre_quantized:
|
|
return expected_keys
|
|
|
|
# Collects all quantizable (linear) layers
|
|
def _find_hqq_quantizable_layers(model, layers):
|
|
for name, module in model.named_children():
|
|
if isinstance(module, (torch.nn.Linear)):
|
|
layers.add(module.name)
|
|
_find_hqq_quantizable_layers(module, layers)
|
|
|
|
new_keys = set(expected_keys)
|
|
|
|
# Name modules
|
|
for name, module in model.named_modules():
|
|
module.name = name
|
|
|
|
# valid modules are Linear layers that have HQQLinear state_dict. We ignore skip_modules and any layers with Linear state_dict() params
|
|
_valid_modules = set()
|
|
_find_hqq_quantizable_layers(model, _valid_modules)
|
|
|
|
# Remove skipped modules
|
|
_skipped_modules = set()
|
|
for _module in _valid_modules:
|
|
for _skip_module in model.config.quantization_config["skip_modules"]:
|
|
if _skip_module in _module:
|
|
_skipped_modules.add(_module)
|
|
_valid_modules -= _skipped_modules
|
|
|
|
# Append new expected layers based on _ref_keys
|
|
_ref_keys = HQQLinear(
|
|
linear_layer=None,
|
|
quant_config=None,
|
|
compute_dtype=torch.float16,
|
|
device="cpu",
|
|
del_orig=False,
|
|
).state_dict_keys() - {"bias"}
|
|
|
|
# Clean-up
|
|
_rm_keys = set()
|
|
for key in new_keys:
|
|
if any(_module in key for _module in _valid_modules):
|
|
_rm_keys.add(key)
|
|
new_keys -= _rm_keys
|
|
# At this point, new_keys contains all the keys of the layers that are NOT HQQLinear or torch.nn.Linear
|
|
|
|
# Re-populate Linear/HQQLinear
|
|
for _module in _valid_modules:
|
|
if _module + ".weight" in loaded_keys:
|
|
new_keys.add(_module + ".weight")
|
|
else:
|
|
new_keys.update({_module + "." + _ref_key for _ref_key in _ref_keys})
|
|
if _module + ".bias" in loaded_keys:
|
|
new_keys.add(_module + ".bias")
|
|
|
|
return list(new_keys)
|
|
|
|
def param_needs_quantization(self, model: "PreTrainedModel", param_name: str, **kwargs) -> bool:
|
|
module, _ = get_module_from_name(model, param_name)
|
|
# Since we do not prepare the modules in advance, we need every param of the Linear layer to go through
|
|
# `create_quantized_param`, even when `self.is_quantized == True`
|
|
return isinstance(module, torch.nn.Linear)
|
|
|
|
def create_quantized_param(
|
|
self,
|
|
model: "PreTrainedModel",
|
|
param_value: "torch.Tensor",
|
|
param_name: str,
|
|
target_device: "torch.device",
|
|
**kwargs,
|
|
):
|
|
module, tensor_name = get_module_from_name(model, param_name)
|
|
module_name = param_name.rsplit(".", 1)[0]
|
|
parent_module, node = get_module_from_name(model, module_name)
|
|
|
|
quant_config = model.config.quantization_config["quant_config"]
|
|
skip_modules = model.config.quantization_config["skip_modules"]
|
|
|
|
# In this case we do not quantize this layer (it's explicitly skipped) -> simply load param
|
|
if any(skip_module in module.name for skip_module in skip_modules):
|
|
module.load_state_dict(
|
|
{tensor_name: param_value.to(device=target_device, dtype=self.dtype)}, strict=False, assign=True
|
|
)
|
|
return
|
|
|
|
# We need this hack as the model is not pre-prepared as an empty skeleton on meta device
|
|
if self.pre_quantized:
|
|
# Save them for later
|
|
if not hasattr(self, "hqq_params"):
|
|
self.hqq_params = defaultdict(dict)
|
|
self.hqq_params[module_name].update({tensor_name: param_value})
|
|
hqq_params = self.hqq_params[module_name]
|
|
|
|
# If they are all present and saved, make it a HQQLinear layer! (we cannot do it param after param because
|
|
# hqq does not support it...)
|
|
if all(k in hqq_params for k in self.hqq_keys) and ("bias" in hqq_params or module.bias is None):
|
|
hqq_layer = HQQLinear(
|
|
linear_layer=None,
|
|
quant_config=None,
|
|
compute_dtype=self.dtype,
|
|
device=target_device,
|
|
del_orig=False,
|
|
)
|
|
hqq_layer.load_state_dict(hqq_params)
|
|
|
|
if hqq_layer.bias is not None and isinstance(hqq_layer.bias, torch.Tensor):
|
|
hqq_layer.bias = torch.nn.Parameter(hqq_layer.bias)
|
|
if self.using_multi_gpu:
|
|
hqq_layer = self._patch_layer_for_multigpu(hqq_layer)
|
|
|
|
setattr(parent_module, node, hqq_layer)
|
|
del self.hqq_params[module_name], module
|
|
return
|
|
|
|
# Load param in the module (without caring about device or dtype, it will be changed later)
|
|
module.load_state_dict({tensor_name: param_value}, strict=False, assign=True)
|
|
|
|
# If both the weight and bias have already been loaded, time to quantize!
|
|
module_is_ready = module.weight.device.type != "meta" and (
|
|
module.bias is None or module.bias.device.type != "meta"
|
|
)
|
|
|
|
if module_is_ready:
|
|
module_tag = ".".join(module.name.split(".")[-2:])
|
|
if "weight_quant_params" in quant_config:
|
|
module_quant_config = quant_config
|
|
elif module_tag in quant_config:
|
|
module_quant_config = quant_config[module_tag]
|
|
|
|
hqq_layer = HQQLinear(
|
|
module,
|
|
quant_config=module_quant_config,
|
|
compute_dtype=self.dtype,
|
|
device=target_device,
|
|
del_orig=True,
|
|
)
|
|
|
|
if hqq_layer.bias is not None and isinstance(hqq_layer.bias, torch.Tensor):
|
|
hqq_layer.bias = torch.nn.Parameter(hqq_layer.bias)
|
|
|
|
if self.using_multi_gpu:
|
|
hqq_layer = self._patch_layer_for_multigpu(hqq_layer)
|
|
|
|
setattr(parent_module, node, hqq_layer)
|
|
|
|
def _patch_layer_for_multigpu(self, hqq_layer):
|
|
def forward_with_device(self, x):
|
|
out = torch.matmul(x.to(self.device), self.dequantize().t())
|
|
if self.bias is not None:
|
|
out += self.bias
|
|
return out
|
|
|
|
hqq_layer.forward = lambda x: forward_with_device(hqq_layer, x)
|
|
return hqq_layer
|
|
|
|
def _process_model_before_weight_loading(
|
|
self,
|
|
model: "PreTrainedModel",
|
|
**kwargs,
|
|
):
|
|
# Add the corresponding quant_config to each valid module. This allows us to do the actual nn.Linear -> HQQLinear conversion in create_quantized_param().
|
|
# prepare_for_hqq_linear() also sets the right quantization config inside the model (model.config.quantization_config) and the layers (hqq_layer.quant_config)
|
|
model = prepare_for_hqq_linear(model, quantization_config=self.quantization_config)
|
|
|
|
def _process_model_after_weight_loading(self, model: "PreTrainedModel", **kwargs):
|
|
model.is_hqq_quantized = True
|
|
model.is_hqq_serializable = self.is_serializable()
|
|
return model
|
|
|
|
def is_serializable(self, safe_serialization=None):
|
|
return True
|
|
|
|
@property
|
|
def is_trainable(self) -> bool:
|
|
return True
|