DriverTrac/venv/lib/python3.12/site-packages/triton/backends/nvidia/compiler.py
2025-11-28 09:08:33 +05:30

526 lines
21 KiB
Python

from triton.backends.compiler import BaseBackend, GPUTarget, Language
from triton._C.libtriton import ir, passes, llvm, nvidia
from triton import knobs
from triton.runtime.errors import PTXASError
from dataclasses import dataclass
import functools
from typing import Any, Dict, Tuple, Optional
from types import ModuleType
import hashlib
import re
import tempfile
import signal
import os
import subprocess
from pathlib import Path
def min_dot_size(target: GPUTarget):
def check_dot_compatibility(lhs_type, rhs_type) -> Tuple[int, int, int]: # [m, n, k]
lhs_bitwidth = lhs_type.scalar.primitive_bitwidth
rhs_bitwidth = rhs_type.scalar.primitive_bitwidth
assert lhs_bitwidth == rhs_bitwidth, "lhs and rhs bitwidth must be the same"
# For small M/N the input we can still use tensorcores with padding.
if lhs_bitwidth == 8:
return (1, 1, 32)
else:
return (1, 1, 16)
return check_dot_compatibility
def get_ptxas() -> knobs.NvidiaTool:
return knobs.nvidia.ptxas
@functools.lru_cache()
def get_ptxas_version():
mock_ver = knobs.nvidia.mock_ptx_version
if mock_ver is not None:
return mock_ver # This is not really a version of ptxas, but it is good enough for testing
version = subprocess.check_output([get_ptxas().path, "--version"]).decode("utf-8")
return version
@functools.lru_cache()
def ptx_get_version(cuda_version) -> int:
'''
Get the highest PTX version supported by the current CUDA driver.
'''
assert isinstance(cuda_version, str)
major, minor = map(int, cuda_version.split('.'))
if major == 12:
if minor < 6:
return 80 + minor
else:
return 80 + minor - 1
if major == 11:
return 70 + minor
if major == 10:
return 63 + minor
if major >= 13:
base_ptx = 90
return base_ptx + (major - 13) * 10 + minor
raise RuntimeError("Triton only support CUDA 10.0 or higher, but got CUDA version: " + cuda_version)
def get_ptx_version_from_options(options, arch: int):
ptx_version = options.ptx_version
if ptx_version is None:
cuda_version = get_ptxas().version
ptx_version = ptx_get_version(cuda_version)
return ptx_version
@functools.lru_cache()
def get_features(options, arch: int):
ptx_version = get_ptx_version_from_options(options, arch)
# PTX 8.6 is the max version supported by llvm c1188642.
#
# To check if a newer PTX version is supported, increase this value
# and run a test. If it's not supported, LLVM will print a warning
# like "+ptx8.4 is not a recognized feature for this target".
llvm_ptx_version = min(86, ptx_version)
features = f'+ptx{llvm_ptx_version}'
return features
@functools.lru_cache(None)
def file_hash(path):
with open(path, "rb") as f:
return hashlib.sha256(f.read()).hexdigest()
def sm_arch_from_capability(capability: int):
# TODO: Handle non-"a" sms
suffix = "a" if capability >= 90 else ""
return f"sm_{capability}{suffix}"
@dataclass(frozen=True)
class CUDAOptions:
num_warps: int = 4
num_ctas: int = 1
num_stages: int = 3
warp_size: int = 32
# maxnreg corresponds to the ptx parameter .maxnreg, which controls the
# maximum number of 32-bit registers used by one thread.
maxnreg: Optional[int] = None
cluster_dims: tuple = (1, 1, 1)
ptx_version: int = None
ptx_options: str = None
ir_override: Optional[str] = None # filename of a user-defined IR (*.{ttir|ttgir|llir|ptx})
enable_fp_fusion: bool = True
launch_cooperative_grid: bool = False
launch_pdl: bool = False
supported_fp8_dtypes: Tuple[str] = ("fp8e5", "fp8e4b15")
deprecated_fp8_dot_operand_dtypes: Tuple[str] = ()
default_dot_input_precision: str = "tf32"
allowed_dot_input_precisions: Tuple[str] = ("tf32", "tf32x3", "ieee")
max_num_imprecise_acc_default: bool = None
extern_libs: dict = None
debug: bool = False
backend_name: str = 'cuda'
sanitize_overflow: bool = True
arch: str = None
instrumentation_mode: str = ""
def __post_init__(self):
default_libdir = Path(__file__).parent / 'lib'
extern_libs = {} if self.extern_libs is None else dict(self.extern_libs)
if not extern_libs.get('libdevice', None):
extern_libs['libdevice'] = knobs.nvidia.libdevice_path or str(default_libdir / 'libdevice.10.bc')
object.__setattr__(self, 'extern_libs', tuple(extern_libs.items()))
assert self.num_warps > 0 and (self.num_warps & (self.num_warps - 1)) == 0, \
"num_warps must be a power of 2"
def hash(self):
hash_dict = dict(self.__dict__)
hash_dict["extern_libs"] = tuple((k, file_hash(v)) for k, v in sorted(hash_dict["extern_libs"]))
key = "_".join([f"{name}-{val}" for name, val in sorted(hash_dict.items())])
return hashlib.sha256(key.encode("utf-8")).hexdigest()
class CUDABackend(BaseBackend):
instrumentation = None
@staticmethod
def supports_target(target: GPUTarget):
return target.backend == 'cuda'
def _parse_arch(self, arch):
pattern = r"^sm(\d+)$"
match = re.fullmatch(pattern, arch)
if not match:
raise ValueError(f"TRITON_OVERRIDE_ARCH must have the form {pattern}")
return int(match.group(1))
def get_target_name(self, options) -> str:
capability = self._parse_arch(options.arch)
return f"cuda:{capability}"
def __init__(self, target: GPUTarget) -> None:
super().__init__(target)
self.binary_ext = "cubin"
def parse_options(self, opts) -> Any:
args = {'arch': knobs.runtime.override_arch or f"sm{self.target.arch}"}
args.update({k: opts[k] for k in CUDAOptions.__dataclass_fields__.keys() if k in opts if opts[k] is not None})
capability = int(self._parse_arch(args["arch"]))
if args.get("num_ctas", 1) > 1 and capability < 90:
raise ValueError((f"num_ctas > 1 requires NVIDIA SM90+ (Hopper). "
f"Current target is sm_{capability}. This configuration will fail. "
f"Please set num_ctas=1 or target an SM90+ GPU."))
if "supported_fp8_dtypes" not in args:
supported_fp8_dtypes = set(CUDAOptions.supported_fp8_dtypes)
if capability >= 89:
supported_fp8_dtypes.add("fp8e4nv")
args["supported_fp8_dtypes"] = tuple(sorted(supported_fp8_dtypes))
if "deprecated_fp8_dot_operand_dtypes" not in args:
if capability >= 90:
args["deprecated_fp8_dot_operand_dtypes"] = ("fp8e4b15", )
if "enable_fp_fusion" not in args:
args["enable_fp_fusion"] = knobs.language.default_fp_fusion
args["max_num_imprecise_acc_default"] = 2**30 if capability == 90 else 0
return CUDAOptions(**args)
def pack_metadata(self, metadata):
return (
metadata.num_warps,
metadata.num_ctas,
metadata.shared,
metadata.cluster_dims[0],
metadata.cluster_dims[1],
metadata.cluster_dims[2],
)
def get_codegen_implementation(self, options):
import triton.language.extra.cuda as cuda
capability = int(self._parse_arch(options.arch))
codegen_fns = {
"convert_custom_types":
cuda.convert_custom_float8_sm80 if capability >= 80 else cuda.convert_custom_float8_sm70, "min_dot_size":
min_dot_size(self.target)
}
return codegen_fns
def get_module_map(self) -> Dict[str, ModuleType]:
from triton.language.extra.cuda import libdevice
return {"triton.language.extra.libdevice": libdevice}
def load_dialects(self, ctx):
nvidia.load_dialects(ctx)
if CUDABackend.instrumentation:
CUDABackend.instrumentation.load_dialects(ctx)
@staticmethod
def make_ttir(mod, metadata, opt, capability):
pm = ir.pass_manager(mod.context)
pm.enable_debug()
passes.common.add_inliner(pm)
passes.ttir.add_rewrite_tensor_pointer(pm)
if capability // 10 < 9:
passes.ttir.add_rewrite_tensor_descriptor_to_pointer(pm)
passes.common.add_canonicalizer(pm)
passes.ttir.add_combine(pm)
passes.ttir.add_reorder_broadcast(pm)
passes.common.add_cse(pm)
passes.common.add_symbol_dce(pm)
passes.ttir.add_loop_unroll(pm)
pm.run(mod)
return mod
@staticmethod
def make_ttgir(mod, metadata, opt, capability):
# Set maxnreg on all kernels, if it was provided.
if opt.maxnreg is not None:
mod.set_attr("ttg.maxnreg", ir.builder(mod.context).get_int32_attr(opt.maxnreg))
cluster_info = nvidia.ClusterInfo()
if opt.cluster_dims is not None:
cluster_info.clusterDimX = opt.cluster_dims[0]
cluster_info.clusterDimY = opt.cluster_dims[1]
cluster_info.clusterDimZ = opt.cluster_dims[2]
pm = ir.pass_manager(mod.context)
dump_enabled = pm.enable_debug()
passes.ttir.add_convert_to_ttgpuir(pm, f"cuda:{capability}", opt.num_warps, 32, opt.num_ctas)
# optimize TTGIR
passes.ttgpuir.add_coalesce(pm)
if capability // 10 >= 8:
passes.ttgpuir.add_f32_dot_tc(pm)
# TODO(Qingyi): Move PlanCTAPass to the front of CoalescePass
nvidia.passes.ttnvgpuir.add_plan_cta(pm, cluster_info)
passes.ttgpuir.add_remove_layout_conversions(pm)
passes.ttgpuir.add_optimize_thread_locality(pm)
passes.ttgpuir.add_accelerate_matmul(pm)
passes.ttgpuir.add_remove_layout_conversions(pm)
passes.ttgpuir.add_optimize_dot_operands(pm, capability >= 80)
nvidia.passes.ttnvgpuir.add_optimize_descriptor_encoding(pm)
passes.ttir.add_loop_aware_cse(pm)
if capability // 10 in [8, 9]:
passes.ttgpuir.add_fuse_nested_loops(pm)
passes.common.add_canonicalizer(pm)
passes.ttir.add_triton_licm(pm)
passes.common.add_canonicalizer(pm)
passes.ttgpuir.add_combine_tensor_select_and_if(pm)
nvidia.passes.hopper.add_hopper_warpspec(pm, opt.num_stages, dump_enabled)
passes.ttgpuir.add_assign_latencies(pm, opt.num_stages)
passes.ttgpuir.add_schedule_loops(pm)
passes.ttgpuir.add_pipeline(pm, opt.num_stages, dump_enabled)
elif capability // 10 >= 10:
passes.ttgpuir.add_fuse_nested_loops(pm)
passes.common.add_canonicalizer(pm)
passes.ttir.add_triton_licm(pm)
passes.ttgpuir.add_optimize_accumulator_init(pm)
passes.ttgpuir.add_hoist_tmem_alloc(pm, False)
nvidia.passes.ttnvgpuir.add_promote_lhs_to_tmem(pm)
passes.ttgpuir.add_assign_latencies(pm, opt.num_stages)
passes.ttgpuir.add_schedule_loops(pm)
passes.ttgpuir.add_warp_specialize(pm, opt.num_stages)
passes.ttgpuir.add_pipeline(pm, opt.num_stages, dump_enabled)
passes.ttgpuir.add_combine_tensor_select_and_if(pm)
# hoist again and allow hoisting out of if statements
passes.ttgpuir.add_hoist_tmem_alloc(pm, True)
nvidia.passes.ttnvgpuir.add_remove_tmem_tokens(pm)
else:
passes.ttir.add_triton_licm(pm)
passes.common.add_canonicalizer(pm)
passes.ttir.add_loop_aware_cse(pm)
passes.ttgpuir.add_prefetch(pm)
passes.ttgpuir.add_optimize_dot_operands(pm, capability >= 80)
passes.ttgpuir.add_coalesce_async_copy(pm)
nvidia.passes.ttnvgpuir.add_optimize_tmem_layouts(pm)
passes.ttgpuir.add_remove_layout_conversions(pm)
nvidia.passes.ttnvgpuir.add_interleave_tmem(pm)
passes.ttgpuir.add_reduce_data_duplication(pm)
passes.ttgpuir.add_reorder_instructions(pm)
passes.ttir.add_loop_aware_cse(pm)
passes.common.add_symbol_dce(pm)
if capability // 10 >= 9:
nvidia.passes.ttnvgpuir.add_tma_lowering(pm)
nvidia.passes.ttnvgpuir.add_fence_insertion(pm, capability)
nvidia.passes.ttnvgpuir.add_lower_mma(pm)
passes.common.add_sccp(pm)
passes.common.add_cse(pm)
passes.common.add_canonicalizer(pm)
pm.run(mod)
metadata["cluster_dims"] = (cluster_info.clusterDimX, cluster_info.clusterDimY, cluster_info.clusterDimZ)
tensordesc_meta = mod.get_tensordesc_metadata()
metadata["tensordesc_meta"] = tensordesc_meta
return mod
def gluon_to_ttgir(self, src, metadata, options, capability):
mod = src
pm = ir.pass_manager(mod.context)
pm.enable_debug()
passes.gluon.add_inliner(pm)
passes.gluon.add_resolve_auto_encodings(pm)
passes.common.add_sccp(pm)
passes.ttir.add_loop_aware_cse(pm)
passes.gluon.add_canonicalizer(pm)
passes.ttgpuir.add_combine_tensor_select_and_if(pm)
pm.run(mod)
metadata["tensordesc_meta"] = mod.get_tensordesc_metadata()
return mod
def make_llir(self, src, metadata, options, capability):
ptx_version = get_ptx_version_from_options(options, self.target.arch)
mod = src
# TritonGPU -> LLVM-IR (MLIR)
pm = ir.pass_manager(mod.context)
pm.enable_debug()
passes.ttgpuir.add_combine_tensor_select_and_if(pm)
passes.ttgpuir.add_allocate_warp_groups(pm)
passes.convert.add_scf_to_cf(pm)
nvidia.passes.ttgpuir.add_allocate_shared_memory_nv(pm, capability, ptx_version)
nvidia.passes.ttnvgpuir.add_allocate_tensor_memory(pm)
if knobs.compilation.enable_experimental_consan:
# Call ConcurrencySanitizerPass here, before allocating global scratch memory but after allocating tensor and shared
passes.ttgpuir.add_concurrency_sanitizer(pm)
passes.ttgpuir.add_allocate_global_scratch_memory(pm)
nvidia.passes.ttnvgpuir.add_proxy_fence_insertion(pm, capability)
# instrumentation point here so we can override IRs above (e.g., ttir and ttgir)
if CUDABackend.instrumentation:
CUDABackend.instrumentation.patch("ttgpuir_to_llvmir", pm, mod.context)
nvidia.passes.ttgpuir.add_to_llvmir(pm, capability, ptx_version)
passes.common.add_canonicalizer(pm)
passes.common.add_cse(pm)
nvidia.passes.ttnvgpuir.add_nvgpu_to_llvm(pm)
nvidia.passes.ttnvgpuir.add_warp_specialize_to_llvm(pm)
passes.common.add_canonicalizer(pm)
passes.common.add_cse(pm)
passes.common.add_symbol_dce(pm)
passes.convert.add_nvvm_to_llvm(pm)
if not knobs.compilation.disable_line_info:
passes.llvmir.add_di_scope(pm)
if CUDABackend.instrumentation:
CUDABackend.instrumentation.patch("llvmir_to_llvm", pm, mod.context)
pm.run(mod)
# LLVM-IR (MLIR) -> LLVM-IR (LLVM)
llvm.init_targets()
context = llvm.context()
if knobs.compilation.enable_asan:
raise RuntimeError(
"Address Sanitizer Error: Address sanitizer is currently only supported on the AMD backend")
llvm_mod = llvm.to_module(mod, context)
proc = sm_arch_from_capability(capability)
features = get_features(options, self.target.arch)
triple = 'nvptx64-nvidia-cuda'
nvidia.set_short_ptr()
llvm.attach_datalayout(llvm_mod, triple, proc, features)
nvidia.set_nvvm_reflect_ftz(llvm_mod)
if options.extern_libs and nvidia.has_extern_deps(llvm_mod):
paths = [path for (name, path) in options.extern_libs]
llvm.link_extern_libs(llvm_mod, paths)
llvm.optimize_module(llvm_mod, llvm.OPTIMIZE_O3)
# Get some metadata
# warp-specialization mutates num_warps
total_num_warps = src.get_int_attr("ttg.total-num-warps")
if total_num_warps is not None:
metadata["num_warps"] = total_num_warps
metadata["shared"] = src.get_int_attr("ttg.shared")
metadata["tmem_size"] = src.get_int_attr("ttg.tensor_memory_size")
metadata["global_scratch_size"] = src.get_int_attr("ttg.global_scratch_memory_size")
metadata["global_scratch_align"] = src.get_int_attr("ttg.global_scratch_memory_alignment")
metadata["profile_scratch_size"] = src.get_int_attr("ttg.profile_scratch_memory_size") or 0
metadata["profile_scratch_align"] = src.get_int_attr("ttg.profile_scratch_memory_alignment") or 1
ret = str(llvm_mod)
del llvm_mod
del context
return ret
def make_ptx(self, src, metadata, opt, capability):
ptx_version = get_ptx_version_from_options(opt, self.target.arch)
triple = 'nvptx64-nvidia-cuda'
proc = sm_arch_from_capability(capability)
features = get_features(opt, self.target.arch)
ret = llvm.translate_to_asm(src, triple, proc, features, [], opt.enable_fp_fusion, False)
# Find kernel names (there should only be one)
names = re.findall(r".visible .entry ([a-zA-Z_][a-zA-Z0-9_]*)", ret)
assert len(names) == 1
metadata["name"] = names[0]
# post-process
ptx_version = f'{ptx_version//10}.{ptx_version%10}'
ret = re.sub(r'\.version \d+\.\d+', f'.version {ptx_version}', ret, flags=re.MULTILINE)
ret = re.sub(r'\.target sm_\d+', f'.target sm_{capability}', ret, flags=re.MULTILINE)
# Remove the debug flag that prevents ptxas from optimizing the code
ret = re.sub(r",\s*debug|debug,\s*", "", ret)
if knobs.nvidia.dump_nvptx:
print("// -----// NVPTX Dump //----- //")
print(ret)
return ret
def make_cubin(self, src, metadata, opt, capability):
ptxas = get_ptxas().path
with tempfile.NamedTemporaryFile(delete=False, mode='w', suffix='.ptx') as fsrc, \
tempfile.NamedTemporaryFile(delete=False, mode='r', suffix='.log') as flog:
fsrc.write(src)
fsrc.flush()
fbin = fsrc.name + '.o'
debug_info = []
if knobs.compilation.disable_line_info:
# This option is ignored if used without -lineinfo
debug_info += ["-lineinfo", "-suppress-debug-info"]
elif knobs.nvidia.disable_ptxas_opt:
# Synthesize complete debug info
debug_info += ["-g"]
else:
# Only emit line info
debug_info += ["-lineinfo"]
fmad = [] if opt.enable_fp_fusion else ["--fmad=false"]
arch = sm_arch_from_capability(capability)
# Disable ptxas optimizations if requested
disable_opt = ['--opt-level', '0'] if knobs.nvidia.disable_ptxas_opt else []
# Accept more ptxas options if provided
ptx_extra_options = opt.ptx_options.split(" ") if opt.ptx_options else []
ptxas_cmd = [
ptxas, *debug_info, *fmad, '-v', *disable_opt, *ptx_extra_options, f'--gpu-name={arch}', fsrc.name,
'-o', fbin
]
try:
subprocess.run(ptxas_cmd, check=True, close_fds=False, stderr=flog)
if knobs.nvidia.dump_ptxas_log:
with open(flog.name) as log_file:
print(log_file.read())
if os.path.exists(fsrc.name):
os.remove(fsrc.name)
if os.path.exists(flog.name):
os.remove(flog.name)
except subprocess.CalledProcessError as e:
with open(flog.name) as log_file:
log = log_file.read()
if os.path.exists(flog.name):
os.remove(flog.name)
if e.returncode == 255:
error = 'Internal Triton PTX codegen error'
elif e.returncode == 128 + signal.SIGSEGV:
error = '`ptxas` raised SIGSEGV'
else:
error = f'`ptxas` failed with error code {e.returncode}'
error = (f"{error}\n"
f"`ptxas` stderr:\n{log}\n"
f'Repro command: {" ".join(ptxas_cmd)}\n')
print(f"""
================================================================
{error}
{src}
================================================================
please share the reproducer above with Triton project.
""")
raise PTXASError(error)
with open(fbin, 'rb') as f:
cubin = f.read()
if os.path.exists(fbin):
os.remove(fbin)
return cubin
def add_stages(self, stages, options, language):
capability = self._parse_arch(options.arch)
if language == Language.TRITON:
stages["ttir"] = lambda src, metadata: self.make_ttir(src, metadata, options, capability)
stages["ttgir"] = lambda src, metadata: self.make_ttgir(src, metadata, options, capability)
elif language == Language.GLUON:
stages["ttgir"] = lambda src, metadata: self.gluon_to_ttgir(src, metadata, options, capability)
stages["llir"] = lambda src, metadata: self.make_llir(src, metadata, options, capability)
stages["ptx"] = lambda src, metadata: self.make_ptx(src, metadata, options, self.target.arch)
stages["cubin"] = lambda src, metadata: self.make_cubin(src, metadata, options, self.target.arch)
@functools.lru_cache()
def hash(self):
version = get_ptxas_version()
return f'{version}-{self.target.arch}'