DriverTrac/venv/lib/python3.12/site-packages/triton/language/semantic.py
2025-11-28 09:08:33 +05:30

1940 lines
98 KiB
Python

from __future__ import annotations # remove after python 3.11
import warnings
from typing import List, Optional, Sequence, Tuple, TypeVar, Generic, Type
import numbers
from triton.runtime import driver
from .._C.libtriton import ir
from . import core as tl
T = TypeVar('T')
TensorTy = TypeVar('TensorTy')
class IncompatibleTypeErrorImpl(Exception):
def __init__(self, type_a, type_b):
self.type_a = type_a
self.type_b = type_b
self.message = "invalid operands of type " + self.type_a.__repr__() + " and " + self.type_b.__repr__()
super(IncompatibleTypeErrorImpl, self).__init__(self.message)
class TritonSemantic(Generic[TensorTy]):
tensor: Type[TensorTy] = tl.tensor
lang = tl
builder: ir.builder
def __init__(self, builder):
self.builder = builder
# ===----------------------------------------------------------------------===##
# Programming Model
# ===----------------------------------------------------------------------===##
def program_id(self, axis: int) -> TensorTy:
if axis not in (0, 1, 2):
raise ValueError(f"program_id axis must be 0, 1, or 2 but got {axis}")
return self.tensor(self.builder.create_get_program_id(axis), tl.int32)
def num_programs(self, axis: int) -> TensorTy:
if axis not in (0, 1, 2):
raise ValueError(f"num_programs axis must be 0, 1, or 2 but got {axis}")
return self.tensor(self.builder.create_get_num_programs(axis), tl.int32)
# ===----------------------------------------------------------------------===//
# Implicit Casting Utilities
# ===----------------------------------------------------------------------===//
def integer_promote_impl(self, a_ty: tl.dtype, b_ty: tl.dtype) -> tl.dtype:
a_rank = a_ty.int_bitwidth
b_rank = b_ty.int_bitwidth
a_sn = a_ty.int_signedness
b_sn = b_ty.int_signedness
# Rules for signedness taken from "Usual arithmetic conversions" on
# https://en.cppreference.com/w/c/language/conversion.
if a_sn == b_sn:
return a_ty if a_rank > b_rank else b_ty
elif a_sn == tl.dtype.SIGNEDNESS.UNSIGNED:
return a_ty if a_rank >= b_rank else b_ty
elif b_sn == tl.dtype.SIGNEDNESS.UNSIGNED:
return b_ty if b_rank >= a_rank else a_ty
raise TypeError(f"unexpected signedness {a_sn} and {b_sn}")
def computation_type_impl(self, a_ty: tl.dtype, a_is_scalar: bool, b_ty: tl.dtype, b_is_scalar: bool,
div_or_mod: bool) -> tl.dtype:
# 0) For scalars we follow semantics similar to PyTorch, namely:
# - If the scalar is of a lower or equal kind (bool < uint < int < fp),
# it doesn't participate in the promotion
if a_is_scalar != b_is_scalar:
scalar_ty, tensor_ty = (a_ty, b_ty) if a_is_scalar else (b_ty, a_ty)
if scalar_ty.kind().value <= tensor_ty.kind().value:
# Upcast because of 3) and 4) below!
if div_or_mod and (tensor_ty in (tl.float16, tl.bfloat16)):
return tl.float32
return tensor_ty
# 1) if one operand is double, the other is implicitly
# converted to double
if a_ty.is_fp64() or b_ty.is_fp64():
return tl.float64
# 2) if one operand is float, the other is implicitly
# converted to float
if a_ty.is_fp32() or b_ty.is_fp32():
return tl.float32
# 3 ) if one operand is half, the other is implicitly converted to half
# unless we're doing / or %, which do not exist natively in PTX for fp16.
# Supported PTX op: add, sub, mul, fma, neg, abs, min, max, tanh, ex2, setp
if a_ty.is_fp16() or b_ty.is_fp16():
if div_or_mod:
return tl.float32
else:
return tl.float16
# 4) return bf16 only if both operands are of bf16
if a_ty.is_bf16() and b_ty.is_bf16():
if div_or_mod:
return tl.float32
else:
return tl.bfloat16
if a_ty.is_bf16() or b_ty.is_bf16():
return tl.float32
# 5) return fp16 if operands are different fp8
if a_ty.is_fp8() and b_ty.is_fp8():
return a_ty if a_ty == b_ty else tl.float16
if not a_ty.is_int() or not b_ty.is_int():
raise TypeError(f"unexpected type {a_ty} and {b_ty}")
# 6 ) both operands are integer and undergo
# integer promotion
if div_or_mod and a_ty.int_signedness != b_ty.int_signedness:
raise TypeError("Cannot use /, #, or % with " + a_ty.__repr__() + " and " + b_ty.__repr__() +
" because they have different signedness;"
"this is unlikely to result in a useful answer. Cast them to the same signedness.")
return self.integer_promote_impl(a_ty, b_ty)
def to_tensor(self, x, check_type: bool = True):
if isinstance(x, bool):
return self.tensor(self.builder.get_int1(x), tl.int1)
# Note: compile-time const integers are represented by unsigned values
elif isinstance(x, int):
if -2**31 <= x < 2**31:
dtype = tl.int32
elif 2**31 <= x < 2**32:
dtype = tl.uint32
elif -2**63 <= x < 2**63:
dtype = tl.int64
elif 2**63 <= x < 2**64:
dtype = tl.uint64
else:
raise ValueError(f'Nonrepresentable integer {x}.')
return self.scalar_constant(x, dtype=dtype)
elif isinstance(x, float):
min_float32 = 2**-126
max_float32 = (2 - 2**-23) * 2**127
abs_x = __builtins__['abs'](x)
if abs_x == float("inf") or\
abs_x == 0.0 or \
x != x or \
min_float32 <= abs_x <= max_float32:
dtype = tl.float32
else:
dtype = tl.float64
return self.scalar_constant(x, dtype=dtype)
elif isinstance(x, tl.constexpr):
return self.to_tensor(x.value)
elif isinstance(x, self.tensor):
return x
if check_type:
raise TypeError(f"cannot convert {x} of type {type(x)} to tensor")
return x
# ===----------------------------------------------------------------------===//
# Binary Operators
# ===----------------------------------------------------------------------===//
def check_ptr_type_impl(self, type_a: tl.dtype, type_b: tl.dtype, allow_ptr_a: bool) -> None:
if type_a.is_ptr():
if not allow_ptr_a:
raise IncompatibleTypeErrorImpl(type_a, type_b)
# T* + U* with T != U
if type_b.is_ptr() and (type_a != type_b):
raise IncompatibleTypeErrorImpl(type_a, type_b)
# T* + float
if type_b.is_floating():
raise IncompatibleTypeErrorImpl(type_a, type_b)
def binary_op_type_checking_impl(self, lhs: TensorTy | numbers.Number, rhs: TensorTy | numbers.Number,
allow_lhs_ptr=False, allow_rhs_ptr=False, arithmetic_check=True,
div_or_mod=False) -> Tuple[TensorTy, TensorTy]:
lhs_is_scalar = isinstance(lhs, numbers.Number)
rhs_is_scalar = isinstance(rhs, numbers.Number)
if lhs_is_scalar:
lhs_scalar = lhs
lhs = self.to_tensor(lhs)
if rhs_is_scalar:
rhs_scalar = rhs
rhs = self.to_tensor(rhs)
# implicit typecasting
lhs_sca_ty = lhs.type.scalar
rhs_sca_ty = rhs.type.scalar
self.check_ptr_type_impl(lhs_sca_ty, rhs_sca_ty, allow_lhs_ptr)
self.check_ptr_type_impl(rhs_sca_ty, lhs_sca_ty, allow_rhs_ptr)
if arithmetic_check and not lhs_sca_ty.is_ptr() and not rhs_sca_ty.is_ptr():
ret_sca_ty = self.computation_type_impl(lhs_sca_ty, lhs_is_scalar, rhs_sca_ty, rhs_is_scalar, div_or_mod)
if (lhs_is_scalar and lhs_scalar < 0 and ret_sca_ty.is_int_unsigned()
or rhs_is_scalar and rhs_scalar < 0 and ret_sca_ty.is_int_unsigned()):
raise ValueError("Cannot perform a binary operation between an unsigned tensor and a negative scalar. "
"Perform a explicit cast on one of them.")
if ret_sca_ty.is_int():
if lhs_is_scalar and not (ret_sca_ty.get_int_min_value() <= lhs_scalar <=
ret_sca_ty.get_int_max_value()):
raise ValueError(f"Scalar {lhs_scalar} is out of range for type {ret_sca_ty}")
if rhs_is_scalar and not (ret_sca_ty.get_int_min_value() <= rhs_scalar <=
ret_sca_ty.get_int_max_value()):
raise ValueError(f"Scalar {rhs_scalar} is out of range for type {ret_sca_ty}")
lhs = self.scalar_constant(lhs_scalar, dtype=ret_sca_ty) if lhs_is_scalar else self.cast(lhs, ret_sca_ty)
rhs = self.scalar_constant(rhs_scalar, dtype=ret_sca_ty) if rhs_is_scalar else self.cast(rhs, ret_sca_ty)
# implicit broadcasting
lhs, rhs = self.broadcast_impl_value(lhs, rhs)
return lhs, rhs
def binary_op_sanitize_overflow_impl(self, lhs: TensorTy, rhs: TensorTy, binary_op: callable):
if lhs.type.scalar.int_bitwidth >= 64 or not self.builder.options.sanitize_overflow:
return
lhs_sca_ty = lhs.type.scalar
rhs_sca_ty = rhs.type.scalar
assert lhs_sca_ty == rhs_sca_ty
assert lhs_sca_ty.is_int()
lhs = self.cast(lhs, tl.int64)
rhs = self.cast(rhs, tl.int64)
ret = binary_op(lhs, rhs, False)
max_value = lhs_sca_ty.get_int_max_value()
max_value = self.scalar_constant(max_value, tl.int64)
min_value = lhs_sca_ty.get_int_min_value()
min_value = self.scalar_constant(min_value, tl.int64)
cond = self.and_(self.less_equal(ret, max_value), self.greater_equal(ret, min_value))
msg = f"int{lhs_sca_ty.int_bitwidth} overflow detected for operation {binary_op.__name__}"
self.device_assert(cond, msg, None)
def add(self, input: TensorTy | numbers.Number, other: TensorTy | numbers.Number,
sanitize_overflow: bool) -> TensorTy:
input, other = self.binary_op_type_checking_impl(input, other, True, True)
input_scalar_ty = input.type.scalar
other_scalar_ty = other.type.scalar
if input_scalar_ty.is_ptr() and other_scalar_ty.is_ptr():
raise TypeError("cannot add pointers together")
# offset + ptr
# ptr + offset
if other_scalar_ty.is_ptr() and not input_scalar_ty.is_ptr():
input, other = other, input
input_scalar_ty = input.type.scalar
other_scalar_ty = other.type.scalar
if input_scalar_ty.is_ptr():
other_handle = other.handle
if other.dtype.is_int_unsigned() and other.dtype.int_bitwidth < 64:
# addptr treats offset as signed. Zero-extend unsigned offsets to ensure they're positive
i64_ty = other.type.with_element_ty(tl.int64).to_ir(self.builder)
other_handle = self.builder.create_int_cast(other.handle, i64_ty, False)
return self.tensor(self.builder.create_addptr(input.handle, other_handle), input.type)
# float + float
elif input_scalar_ty.is_floating():
return self.tensor(self.builder.create_fadd(input.handle, other.handle), input.type)
# int + int
elif input_scalar_ty.is_int():
if sanitize_overflow:
self.binary_op_sanitize_overflow_impl(input, other, self.add)
return self.tensor(self.builder.create_add(input.handle, other.handle), input.type)
raise TypeError(f"unexpected type {input_scalar_ty}")
def sub(self, input: TensorTy | numbers.Number, other: TensorTy | numbers.Number,
sanitize_overflow: bool) -> TensorTy:
input, other = self.binary_op_type_checking_impl(input, other, True, False)
scalar_ty = input.type.scalar
# ptr - offset
if scalar_ty.is_ptr():
return self.add(input, self.minus(other), sanitize_overflow=False)
# float - float
if scalar_ty.is_floating():
return self.tensor(self.builder.create_fsub(input.handle, other.handle), input.type)
# int - int
elif scalar_ty.is_int():
if sanitize_overflow:
self.binary_op_sanitize_overflow_impl(input, other, self.sub)
return self.tensor(self.builder.create_sub(input.handle, other.handle), input.type)
raise TypeError(f"unexpected type {scalar_ty}")
def mul(self, input: TensorTy | numbers.Number, other: TensorTy | numbers.Number,
sanitize_overflow: bool) -> TensorTy:
input, other = self.binary_op_type_checking_impl(input, other)
scalar_ty = input.type.scalar
# float * float
if scalar_ty.is_floating():
return self.tensor(self.builder.create_fmul(input.handle, other.handle), input.type)
# int * int
elif scalar_ty.is_int():
if sanitize_overflow:
self.binary_op_sanitize_overflow_impl(input, other, self.mul)
return self.tensor(self.builder.create_mul(input.handle, other.handle), input.type)
raise TypeError(f"unexpected type {scalar_ty}")
def truediv(self, input: TensorTy | numbers.Number, other: TensorTy | numbers.Number) -> TensorTy:
input, other = self.binary_op_type_checking_impl(input, other, False, False, True, True)
input_scalar_ty = input.type.scalar
other_scalar_ty = other.type.scalar
# float / int
if input_scalar_ty.is_floating() and other_scalar_ty.is_int():
other = self.cast(other, input_scalar_ty)
# int / float
elif input_scalar_ty.is_int() and other_scalar_ty.is_floating():
input = self.cast(input, other_scalar_ty)
# int / int (cast to tl.float32)
elif input_scalar_ty.is_int() and other_scalar_ty.is_int():
input = self.cast(input, tl.float32)
other = self.cast(other, tl.float32)
# float / float (cast to the highest exponent type)
elif input_scalar_ty.is_floating() and other_scalar_ty.is_floating():
if input_scalar_ty.fp_mantissa_width > other_scalar_ty.fp_mantissa_width:
other = self.cast(other, input_scalar_ty)
else:
input = self.cast(input, other_scalar_ty)
# unreachable
else:
raise TypeError(f"unexpected type {input_scalar_ty}")
return self.tensor(self.builder.create_fdiv(input.handle, other.handle), input.type)
def floordiv(self, input: TensorTy | numbers.Number, other: TensorTy | numbers.Number) -> TensorTy:
input, other = self.binary_op_type_checking_impl(input, other, False, False, True, True)
input_scalar_ty = input.type.scalar
other_scalar_ty = other.type.scalar
if input_scalar_ty.is_int() and other_scalar_ty.is_int():
ret_ty = self.integer_promote_impl(input_scalar_ty, other_scalar_ty)
input = self.cast(input, ret_ty)
other = self.cast(other, ret_ty)
if ret_ty.is_int_signed():
return self.tensor(self.builder.create_sdiv(input.handle, other.handle), input.type)
else:
return self.tensor(self.builder.create_udiv(input.handle, other.handle), input.type)
raise TypeError(f"unexpected type {input_scalar_ty}")
def fdiv(self, input: TensorTy | numbers.Number, other: TensorTy | numbers.Number, ieee_rounding: bool) -> TensorTy:
input_scalar_ty = input.type.scalar
other_scalar_ty = other.type.scalar
if not input_scalar_ty.is_floating() or not other_scalar_ty.is_floating():
raise TypeError("both operands of fdiv must have floating scalar type")
input, other = self.binary_op_type_checking_impl(input, other, False, False, False, True)
ret = self.builder.create_fdiv(input.handle, other.handle)
return self.tensor(ret, input.type)
def mod(self, input: TensorTy | numbers.Number, other: TensorTy | numbers.Number) -> TensorTy:
input, other = self.binary_op_type_checking_impl(input, other, False, False, True, True)
scalar_ty = input.type.scalar
other_scalar_ty = other.type.scalar
# float % float
if scalar_ty.is_floating():
return self.tensor(self.builder.create_frem(input.handle, other.handle), input.type)
# % int
elif scalar_ty.is_int():
if scalar_ty.int_signedness != other_scalar_ty.int_signedness:
raise TypeError("Cannot mod " + scalar_ty.__repr__() + " by " + other_scalar_ty.__repr__() + " "
"because they have different signedness;"
"this is unlikely to result in a useful answer. Cast them to the same signedness.")
if scalar_ty.is_int_signed():
return self.tensor(self.builder.create_srem(input.handle, other.handle), input.type)
else:
return self.tensor(self.builder.create_urem(input.handle, other.handle), input.type)
raise TypeError(f"unexpected type {scalar_ty}")
##############
# other arithmetic ops
##############
def minimum(self, x: TensorTy, y: TensorTy, propagate_nan: tl.PropagateNan):
x, y = self.binary_op_type_checking_impl(x, y)
dtype = x.dtype
if dtype.is_floating():
if propagate_nan == tl.PropagateNan.ALL:
return self.tensor(self.builder.create_minimumf(x.handle, y.handle), x.type)
elif propagate_nan == tl.PropagateNan.NONE:
return self.tensor(self.builder.create_minnumf(x.handle, y.handle), x.type)
else:
raise ValueError(f"Unexpected propagate_nan {propagate_nan}")
elif dtype.is_int_signed():
return self.tensor(self.builder.create_minsi(x.handle, y.handle), x.type)
elif dtype.is_int_unsigned():
return self.tensor(self.builder.create_minui(x.handle, y.handle), x.type)
else:
raise TypeError(f"Unexpected dtype {dtype}")
def maximum(self, x: TensorTy, y: TensorTy, propagate_nan: tl.PropagateNan):
x, y = self.binary_op_type_checking_impl(x, y)
dtype = x.dtype
if dtype.is_floating():
if propagate_nan == tl.PropagateNan.ALL:
return self.tensor(self.builder.create_maximumf(x.handle, y.handle), x.type)
elif propagate_nan == tl.PropagateNan.NONE:
return self.tensor(self.builder.create_maxnumf(x.handle, y.handle), x.type)
else:
raise ValueError(f"Unexpected propagate_nan {propagate_nan}")
elif dtype.is_int_signed():
return self.tensor(self.builder.create_maxsi(x.handle, y.handle), x.type)
elif dtype.is_int_unsigned():
return self.tensor(self.builder.create_maxui(x.handle, y.handle), x.type)
else:
raise TypeError(f"Unexpected dtype {dtype}")
def clamp(self, x: TensorTy, min: TensorTy, max: TensorTy, propagate_nan: tl.PropagateNan):
min, max = self.binary_op_type_checking_impl(min, max)
x, min = self.binary_op_type_checking_impl(x, min)
x, max = self.binary_op_type_checking_impl(x, max)
dtype = x.dtype
if dtype.is_floating():
return self.tensor(self.builder.create_clampf(x.handle, min.handle, max.handle, propagate_nan), x.type)
else:
raise TypeError(f"Unexpected dtype {dtype}. Only floating point clamp is supported")
##############
# bitwise ops
##############
def bitwise_op_type_checking_impl(self, input: TensorTy, other: TensorTy) -> Tuple[TensorTy, TensorTy]:
input, other = self.binary_op_type_checking_impl(input, other)
input_sca_ty = input.type.scalar
other_sca_ty = other.type.scalar
if not input_sca_ty.is_int() or not other_sca_ty.is_int():
raise IncompatibleTypeErrorImpl(input_sca_ty, other_sca_ty)
ret_sca_ty = self.integer_promote_impl(input_sca_ty, other_sca_ty)
if ret_sca_ty != input_sca_ty:
input = self.cast(input, ret_sca_ty)
if ret_sca_ty != other_sca_ty:
other = self.cast(other, ret_sca_ty)
return input, other
def and_(self, input: TensorTy, other: TensorTy) -> TensorTy:
input, other = self.bitwise_op_type_checking_impl(input, other)
return self.tensor(self.builder.create_and(input.handle, other.handle), input.type)
def or_(self, input: TensorTy, other: TensorTy) -> TensorTy:
input, other = self.bitwise_op_type_checking_impl(input, other)
return self.tensor(self.builder.create_or(input.handle, other.handle), input.type)
def xor_(self, input: TensorTy, other: TensorTy) -> TensorTy:
input, other = self.bitwise_op_type_checking_impl(input, other)
return self.tensor(self.builder.create_xor(input.handle, other.handle), input.type)
def logical_and(self, input: TensorTy, other: TensorTy) -> TensorTy:
if not input.type.is_int1():
input = self.bitcast(input, tl.int1)
if not other.type.is_int1():
other = self.bitcast(other, tl.int1)
return self.and_(input, other)
def logical_or(self, input: TensorTy, other: TensorTy) -> TensorTy:
if not input.type.is_int1():
input = self.bitcast(input, tl.int1)
if not other.type.is_int1():
other = self.bitcast(other, tl.int1)
return self.or_(input, other)
def not_(self, input: TensorTy):
if not input.type.is_int1():
input = self.bitcast(input, tl.int1)
return self.invert(input)
def lshr(self, input: TensorTy, other: TensorTy) -> TensorTy:
input, other = self.bitwise_op_type_checking_impl(input, other)
return self.tensor(self.builder.create_lshr(input.handle, other.handle), input.type)
def ashr(self, input: TensorTy, other: TensorTy) -> TensorTy:
input, other = self.bitwise_op_type_checking_impl(input, other)
return self.tensor(self.builder.create_ashr(input.handle, other.handle), input.type)
def shl(self, input: TensorTy, other: TensorTy) -> TensorTy:
input, other = self.bitwise_op_type_checking_impl(input, other)
return self.tensor(self.builder.create_shl(input.handle, other.handle), input.type)
# ===----------------------------------------------------------------------===//
# Unary Operators
# ===----------------------------------------------------------------------===//
def plus(self, input: TensorTy) -> TensorTy:
return input
def minus(self, input: TensorTy) -> TensorTy:
input_sca_ty = input.type.scalar
if input_sca_ty.is_ptr():
raise ValueError("wrong type argument to unary minus (" + input_sca_ty.__repr__() + ")")
_0 = self.tensor(self.builder.get_null_value(input_sca_ty.to_ir(self.builder)), input_sca_ty)
return self.sub(_0, input, True)
def invert(self, input: TensorTy) -> TensorTy:
input_sca_ty = input.type.scalar
if input_sca_ty.is_ptr() or input_sca_ty.is_floating():
raise ValueError("wrong type argument to unary invert (" + input_sca_ty.__repr__() + ")")
_1 = self.tensor(self.builder.get_all_ones_value(input_sca_ty.to_ir(self.builder)), input_sca_ty)
return self.xor_(input, _1)
# ===----------------------------------------------------------------------===//
# Comparison Operators
# ===----------------------------------------------------------------------===//
def _bool_like(self, v: TensorTy) -> tl.block_type:
return v.type.with_element_ty(tl.int1)
def greater_than(self, input: TensorTy, other: TensorTy) -> TensorTy:
input, other = self.binary_op_type_checking_impl(input, other)
scalar_ty = input.type.scalar
# float > float
if scalar_ty.is_floating():
return self.tensor(self.builder.create_fcmpOGT(input.handle, other.handle), self._bool_like(input))
# > int
elif scalar_ty.is_int():
if scalar_ty.is_int_signed():
return self.tensor(self.builder.create_icmpSGT(input.handle, other.handle), self._bool_like(input))
else:
return self.tensor(self.builder.create_icmpUGT(input.handle, other.handle), self._bool_like(input))
raise TypeError(f"unexpected type {scalar_ty}")
def greater_equal(self, input: TensorTy, other: TensorTy) -> TensorTy:
input, other = self.binary_op_type_checking_impl(input, other)
scalar_ty = input.type.scalar
# float >= float
if scalar_ty.is_floating():
return self.tensor(self.builder.create_fcmpOGE(input.handle, other.handle), self._bool_like(input))
# >= int
elif scalar_ty.is_int():
if scalar_ty.is_int_signed():
return self.tensor(self.builder.create_icmpSGE(input.handle, other.handle), self._bool_like(input))
else:
return self.tensor(self.builder.create_icmpUGE(input.handle, other.handle), self._bool_like(input))
raise TypeError(f"unexpected type {scalar_ty}")
def less_than(self, input: TensorTy, other: TensorTy) -> TensorTy:
input, other = self.binary_op_type_checking_impl(input, other)
scalar_ty = input.type.scalar
# float < float
if scalar_ty.is_floating():
return self.tensor(self.builder.create_fcmpOLT(input.handle, other.handle), self._bool_like(input))
# < int
elif scalar_ty.is_int():
if scalar_ty.is_int_signed():
return self.tensor(self.builder.create_icmpSLT(input.handle, other.handle), self._bool_like(input))
else:
return self.tensor(self.builder.create_icmpULT(input.handle, other.handle), self._bool_like(input))
raise TypeError(f"unexpected type {scalar_ty}")
def less_equal(self, input: TensorTy, other: TensorTy) -> TensorTy:
input, other = self.binary_op_type_checking_impl(input, other)
scalar_ty = input.type.scalar
# float < float
if scalar_ty.is_floating():
return self.tensor(self.builder.create_fcmpOLE(input.handle, other.handle), self._bool_like(input))
# < int
elif scalar_ty.is_int():
if scalar_ty.is_int_signed():
return self.tensor(self.builder.create_icmpSLE(input.handle, other.handle), self._bool_like(input))
else:
return self.tensor(self.builder.create_icmpULE(input.handle, other.handle), self._bool_like(input))
raise TypeError(f"unexpected type {scalar_ty}")
def equal(self, input: TensorTy, other: TensorTy) -> TensorTy:
input, other = self.binary_op_type_checking_impl(input, other)
scalar_ty = input.type.scalar
# float == float
if scalar_ty.is_floating():
return self.tensor(self.builder.create_fcmpOEQ(input.handle, other.handle), self._bool_like(input))
# == int
elif scalar_ty.is_int():
return self.tensor(self.builder.create_icmpEQ(input.handle, other.handle), self._bool_like(input))
raise TypeError(f"unexpected type {scalar_ty}")
def not_equal(self, input: TensorTy, other: TensorTy) -> TensorTy:
input, other = self.binary_op_type_checking_impl(input, other)
scalar_ty = input.type.scalar
# float == float
if scalar_ty.is_floating():
return self.tensor(self.builder.create_fcmpUNE(input.handle, other.handle), self._bool_like(input))
# == int
elif scalar_ty.is_int():
return self.tensor(self.builder.create_icmpNE(input.handle, other.handle), self._bool_like(input))
raise TypeError(f"unexpected type {scalar_ty}")
# ===----------------------------------------------------------------------===//
# Block Creation
# ===----------------------------------------------------------------------===//
def arange(self, start: int, end: int, *, ret_ty: tl.block_type = None) -> TensorTy:
if not isinstance(start, int) or not isinstance(end, int):
raise ValueError("arange's arguments must be of type tl.constexpr")
is_start_int64 = bool(start >> 32)
is_end_int64 = bool(end >> 32)
if is_start_int64 or is_end_int64:
raise ValueError("arange must fit in int32")
if end <= start:
raise ValueError("arange's end argument must be greater than the start argument")
range = end - start
if (range & (range - 1)) != 0:
raise ValueError("arange's range must be a power of 2")
shape = [range]
if ret_ty is None:
ret_ty = tl.block_type(tl.int32, shape)
ret_ty_ir = ret_ty.to_ir(self.builder)
return self.tensor(self.builder.create_make_range(ret_ty_ir, start, end), ret_ty)
def scalar_constant(self, value, dtype: tl.dtype) -> TensorTy:
# scalar
if dtype is None:
raise ValueError("dtype must be specified when value is not a tensor")
if value == 0:
value = self.builder.get_null_value(dtype.to_ir(self.builder))
else:
get_value_fn = getattr(self.builder, f"get_{dtype.name}")
value = get_value_fn(value)
return self.tensor(value, dtype)
def make_scalar(self, value, dtype: tl.dtype) -> TensorTy:
if isinstance(value, tl.tensor):
assert value.numel.value == 1, "only accepts size-1 tensor"
return self.cast(value, dtype)
# scalar
return self.scalar_constant(value, dtype)
def full(self, shape: List[int], value, dtype: tl.dtype) -> TensorTy:
return self.splat(self.make_scalar(value, dtype), shape)
# ===----------------------------------------------------------------------===//
# Shape Manipulation
# ===----------------------------------------------------------------------===//
def splat(self, value: TensorTy, shape: List[int]) -> TensorTy:
assert not value.type.is_block(), "Cannot splat a block tensor"
if len(shape) == 0:
return value
ret_ty = tl.block_type(value.dtype, shape)
return self.tensor(self.builder.create_splat(ret_ty.to_ir(self.builder), value.handle), ret_ty)
def unsplat(self, value: TensorTy) -> TensorTy:
return self.tensor(self.builder.create_unsplat(value.handle), value.dtype)
def reshape(self, input: TensorTy, dst_shape: List[int], can_reorder: bool) -> TensorTy:
numel = 1
for s in dst_shape:
numel *= s
if input.type.numel != numel:
raise ValueError("reshape() cannot change total number of elements in tensor")
ret_ty = tl.block_type(input.type.scalar, dst_shape)
return self.tensor(self.builder.create_reshape(input.handle, dst_shape, can_reorder), ret_ty)
def expand_dims(self, input: TensorTy, axis: int) -> TensorTy:
dst_shape = [tl._unwrap_if_constexpr(x) for x in input.shape]
dst_shape.insert(axis, 1)
if not input.type.is_block():
return self.splat(input, shape=dst_shape)
ret_ty = tl.block_type(input.type.scalar, dst_shape)
return self.tensor(self.builder.create_expand_dims(input.handle, axis), ret_ty)
def cat(self, lhs: TensorTy, rhs: TensorTy, can_reorder: bool) -> TensorTy:
assert can_reorder, "current implementation of `cat` always may reorder elements"
assert len(lhs.shape) == 1
ret_type = tl.block_type(lhs.type.scalar, [lhs.shape[0] + rhs.shape[0]])
return self.tensor(self.builder.create_cat(lhs.handle, rhs.handle), ret_type)
def join(self, a: TensorTy, b: TensorTy) -> TensorTy:
a, b = self.broadcast_impl_value(a, b)
# The IR can't handle joining two scalars, so upcast them to 1D tensors,
# then downcast the result.
was_rank_1 = a.shape == []
if was_rank_1:
a = self.expand_dims(a, 0)
b = self.expand_dims(b, 0)
if isinstance(a.shape[-1], tl.constexpr):
two = tl.constexpr(2)
else:
two = 2
new_shape = a.shape + [two]
ret_type = tl.block_type(a.type.scalar, new_shape)
ret = self.tensor(self.builder.create_join(a.handle, b.handle), ret_type)
if was_rank_1:
ret = self.reshape(ret, [2], can_reorder=False)
return ret
def split(self, a: TensorTy) -> Tuple[TensorTy, TensorTy]:
assert (len(a.shape) > 0)
assert (tl._unwrap_if_constexpr(a.shape[-1]) == 2)
new_shape = a.shape[:-1]
ret_type = tl.block_type(a.type.scalar, new_shape)
outLHS, outRHS = self.builder.create_split(a.handle)
return (
self.tensor(outLHS, ret_type),
self.tensor(outRHS, ret_type),
)
def permute(self, input: TensorTy, dims: Tuple[int]) -> TensorTy:
if len(input.shape) != len(dims):
raise ValueError("permute dims must have the same length as input shape")
if sorted(tl._unwrap_if_constexpr(d) for d in dims) != list(range(len(dims))):
raise ValueError(f"permute dims must be a permutation of 0, 1, ..., n-1, but were {dims}")
ret_type = tl.block_type(input.type.scalar, [input.shape[d] for d in dims])
return self.tensor(self.builder.create_trans(input.handle, dims), ret_type)
def broadcast_impl_shape(self, input: TensorTy, shape: Tuple[int]) -> TensorTy:
if not input.type.is_block():
return self.splat(input, shape)
src_shape = input.type.get_block_shapes()
if len(src_shape) != len(shape):
raise ValueError(f"Cannot broadcast, rank mismatch: {src_shape}, {shape}")
if shape == src_shape:
return input
for i, item in enumerate(src_shape):
if shape[i] != item and item != 1:
raise ValueError(f"Cannot broadcast, the expanded size of the tensor ({shape[i]})"
f" must match the existing size ({item}) at non-singleton dimension"
f" {i}: {src_shape}, {shape}")
ret_ty = tl.block_type(input.type.scalar, shape)
return self.tensor(self.builder.create_broadcast(input.handle, shape), ret_ty)
def broadcast_impl_value(self, lhs: TensorTy, rhs: TensorTy) -> TensorTy:
lhs_ty = lhs.type
rhs_ty = rhs.type
# make_shape_compatible(block, scalar)
if lhs_ty.is_block() and not rhs_ty.is_block():
rhs_ty = lhs_ty.with_element_ty(rhs_ty.scalar)
rhs = self.tensor(self.builder.create_splat(rhs_ty.to_ir(self.builder), rhs.handle), rhs_ty)
# make_shape_compatible(scalar, block)
elif not lhs_ty.is_block() and rhs_ty.is_block():
lhs_ty = rhs_ty.with_element_ty(lhs_ty.scalar)
lhs = self.tensor(self.builder.create_splat(lhs_ty.to_ir(self.builder), lhs.handle), lhs_ty)
# make_shape_compatible(block, block)
elif lhs_ty.is_block() and rhs_ty.is_block():
lhs_shape = lhs_ty.get_block_shapes()
rhs_shape = rhs_ty.get_block_shapes()
if len(lhs_shape) < len(rhs_shape):
# Add new axes to lhs
for _ in range(len(lhs_shape), len(rhs_shape)):
lhs = self.tensor(self.builder.create_expand_dims(lhs.handle, 0),
tl.block_type(lhs_ty.scalar, [1] + lhs_shape.values))
lhs_ty = lhs.type
lhs_shape = lhs_ty.get_block_shapes()
elif len(rhs_shape) < len(lhs_shape):
# Add new axes to rhs
for _ in range(len(rhs_shape), len(lhs_shape)):
rhs = self.tensor(self.builder.create_expand_dims(rhs.handle, 0),
tl.block_type(rhs_ty.scalar, [1] + rhs_shape.values))
rhs_ty = rhs.type
rhs_shape = rhs_ty.get_block_shapes()
assert len(rhs_shape) == len(lhs_shape)
ret_shape = []
for i, left in enumerate(lhs_shape):
right = rhs_shape[i]
if left == 1:
ret_shape.append(right)
elif (right == 1) or (right == left):
ret_shape.append(left)
else:
raise ValueError("Cannot make_shape_compatible: incompatible dimensions "
"at index " + str(i) + ": " + str(left) + " and " + str(right))
if lhs_shape != ret_shape:
ret_ty = tl.block_type(lhs_ty.scalar, ret_shape)
lhs = self.tensor(self.builder.create_broadcast(lhs.handle, ret_shape), ret_ty)
if rhs_shape != ret_shape:
ret_ty = tl.block_type(rhs_ty.scalar, ret_shape)
rhs = self.tensor(self.builder.create_broadcast(rhs.handle, ret_shape), ret_ty)
# (scalar, scalar) => returns original blocks
return lhs, rhs
#######
# cast
#######
def _str_to_rounding_mode(self, rounding_mode: Optional[str]):
if rounding_mode is None:
return None
if rounding_mode == 'rtne':
return ir.ROUNDING_MODE.RTNE
if rounding_mode == 'rtz':
return ir.ROUNDING_MODE.RTZ
raise ValueError(f"Invalid rounding mode: {rounding_mode}. Supported rounding modes are 'rtne' and 'rtz'.")
def bitcast(self, input: TensorTy, dst_ty: tl.dtype) -> TensorTy:
src_ty = input.type
if src_ty.is_block():
dst_ty = src_ty.with_element_ty(dst_ty.scalar)
if src_ty == dst_ty:
return input
src_sca_ty = src_ty.scalar
dst_sca_ty = dst_ty.scalar
if src_sca_ty.is_ptr() or dst_sca_ty.is_ptr():
return self.cast(input, dst_ty)
# Bitcast
src_bits = src_sca_ty.primitive_bitwidth
dst_bits = dst_sca_ty.primitive_bitwidth
if src_bits != dst_bits:
raise ValueError("Cannot bitcast data-type of size " + str(src_bits) + " to "
"data-type of size " + str(dst_bits))
return self.tensor(self.builder.create_bitcast(input.handle, dst_ty.to_ir(self.builder)), dst_ty)
def cast(self, input: TensorTy, dst_ty: tl.dtype, fp_downcast_rounding: Optional[str] = None) -> TensorTy:
src_ty = input.type
src_sca_ty = src_ty.scalar
dst_sca_ty = dst_ty.scalar
if src_sca_ty == dst_sca_ty:
return input
if src_ty.is_block():
dst_ty = src_ty.with_element_ty(dst_sca_ty)
# For fp downcasting default rounding mode should be RTNE, for all other conversions it should
# not be set
fp_downcast_rounding = self._str_to_rounding_mode(fp_downcast_rounding)
use_custom_rounding = False
if dst_sca_ty.is_floating() and src_sca_ty.is_floating(
) and dst_sca_ty.primitive_bitwidth < src_sca_ty.primitive_bitwidth:
if fp_downcast_rounding is None: fp_downcast_rounding = ir.ROUNDING_MODE.RTNE
elif fp_downcast_rounding != ir.ROUNDING_MODE.RTNE: use_custom_rounding = True
else:
if fp_downcast_rounding is not None:
raise ValueError("fp_downcast_rounding should be set only for truncating fp conversions. "
"Source scalar type is " + str(src_sca_ty) + " and destination type is " +
str(dst_sca_ty))
if (src_sca_ty.is_fp8e4b15() or dst_sca_ty.is_fp8e4b15()):
assert self.builder.codegen_fns.get(
"convert_custom_types") is not None, "target doesn't provide conversion for this type."
return self.builder.codegen_fns["convert_custom_types"](input, dst_ty, fp_downcast_rounding, _semantic=self)
# Casting with customized floating types involved: fp8 <=> bf16, fp16, fp32, fp64
# and non-default rounding modes for downcasting
if (src_sca_ty.is_fp8() and dst_sca_ty.is_floating()) or \
(src_sca_ty.is_floating() and dst_sca_ty.is_fp8()) or \
use_custom_rounding:
return self.tensor(
self.builder.create_fp_to_fp(input.handle, dst_ty.to_ir(self.builder), fp_downcast_rounding), dst_ty)
# bf16 <=> (not fp32)
if (src_sca_ty.is_fp16() and not dst_sca_ty.is_fp32()) or \
(src_sca_ty.is_bf16() and not dst_sca_ty.is_fp32()):
return self.cast(self.cast(input, tl.float32), dst_sca_ty)
# Standard floating types' casting: truncation
# fp64 => fp32, fp16, bf16
# fp32 => fp16, bf16
truncate_fp = src_sca_ty.is_floating() and \
dst_sca_ty.is_floating() and \
src_sca_ty.primitive_bitwidth > dst_sca_ty.primitive_bitwidth
if truncate_fp:
return self.tensor(self.builder.create_fp_trunc(input.handle, dst_ty.to_ir(self.builder)), dst_ty)
# Standard floating types' casting: extension
# fp32 => fp64
# fp16 => fp32, fp64
# bf16 => fp32, fp64
ext_fp = src_sca_ty.is_floating() and \
dst_sca_ty.is_floating() and \
src_sca_ty.primitive_bitwidth < dst_sca_ty.primitive_bitwidth
if ext_fp:
return self.tensor(self.builder.create_fp_ext(input.handle, dst_ty.to_ir(self.builder)), dst_ty)
# Casting between integer types
if src_sca_ty.is_int() and dst_sca_ty.is_int() and \
(src_sca_ty.int_bitwidth != dst_sca_ty.int_bitwidth or src_sca_ty.int_signedness != dst_sca_ty.int_signedness):
sign_extend = src_sca_ty.is_int_signed() and not src_sca_ty.is_bool()
if dst_sca_ty.is_bool():
ty = input.dtype.to_ir(self.builder)
_0 = self.tensor(self.builder.get_null_value(ty), input.dtype)
return self.not_equal(input, _0)
else:
return self.tensor(self.builder.create_int_cast(input.handle, dst_ty.to_ir(self.builder), sign_extend),
dst_ty)
# Casting standard floating types to integer types
if src_sca_ty.is_standard_floating() and dst_sca_ty.is_int():
if dst_sca_ty.is_bool():
ty = input.dtype.to_ir(self.builder)
_0 = self.tensor(self.builder.get_null_value(ty), input.dtype)
return self.not_equal(input, _0)
elif dst_sca_ty.is_int_signed():
return self.tensor(self.builder.create_fp_to_si(input.handle, dst_ty.to_ir(self.builder)), dst_ty)
else:
return self.tensor(self.builder.create_fp_to_ui(input.handle, dst_ty.to_ir(self.builder)), dst_ty)
# Casting integer types to standard floating types
if src_sca_ty.is_int() and dst_sca_ty.is_standard_floating():
if src_sca_ty.is_bool() or not src_sca_ty.is_int_signed():
return self.tensor(self.builder.create_ui_to_fp(input.handle, dst_ty.to_ir(self.builder)), dst_ty)
else:
return self.tensor(self.builder.create_si_to_fp(input.handle, dst_ty.to_ir(self.builder)), dst_ty)
# Casting pointer types to integer types
if src_sca_ty.is_ptr() and dst_sca_ty.is_int():
bitwidth = dst_sca_ty.int_bitwidth
if bitwidth == 64:
return self.tensor(self.builder.create_ptr_to_int(input.handle, dst_ty.to_ir(self.builder)), dst_ty)
if bitwidth == 1:
return self.not_equal(self.cast(input, tl.int64), self.tensor(self.builder.get_int64(0), tl.int64))
# Casting integer types to pointer types
if src_sca_ty.is_int() and dst_sca_ty.is_ptr():
return self.tensor(self.builder.create_int_to_ptr(input.handle, dst_ty.to_ir(self.builder)), dst_ty)
# Casting pointer types to pointer types
if src_sca_ty.is_ptr() and dst_sca_ty.is_ptr():
return self.tensor(self.builder.create_bitcast(input.handle, dst_ty.to_ir(self.builder)), dst_ty)
assert False, f'cannot cast {input} to {dst_ty}'
# ===----------------------------------------------------------------------===//
# Memory Operators
# ===----------------------------------------------------------------------===//
def _str_to_load_cache_modifier(self, cache_modifier):
cache = ir.CACHE_MODIFIER.NONE # default
if cache_modifier:
if cache_modifier == ".ca":
cache = ir.CACHE_MODIFIER.CA
elif cache_modifier == ".cg":
cache = ir.CACHE_MODIFIER.CG
elif cache_modifier == ".cv":
cache = ir.CACHE_MODIFIER.CV
else:
raise ValueError(f"Cache modifier {cache_modifier} not supported")
return cache
def _str_to_store_cache_modifier(self, cache_modifier):
cache = ir.CACHE_MODIFIER.NONE # default
if cache_modifier:
if cache_modifier == ".wb":
cache = ir.CACHE_MODIFIER.WB
elif cache_modifier == ".cg":
cache = ir.CACHE_MODIFIER.CG
elif cache_modifier == ".cs":
cache = ir.CACHE_MODIFIER.CS
elif cache_modifier == ".wt":
cache = ir.CACHE_MODIFIER.WT
else:
raise ValueError(f"Cache modifier {cache_modifier} not supported")
return cache
def _str_to_eviction_policy(self, eviction_policy):
eviction = ir.EVICTION_POLICY.NORMAL # default
if eviction_policy:
if eviction_policy == "evict_last":
eviction = ir.EVICTION_POLICY.EVICT_LAST
elif eviction_policy == "evict_first":
eviction = ir.EVICTION_POLICY.EVICT_FIRST
else:
raise ValueError(f"Eviction policy {eviction_policy} not supported")
return eviction
def _str_to_padding_option(self, padding_option):
padding = None # default
if padding_option:
if padding_option == "zero":
padding = ir.PADDING_OPTION.PAD_ZERO
elif padding_option == "nan":
padding = ir.PADDING_OPTION.PAD_NAN
else:
raise ValueError(f"Padding option {padding_option} not supported")
return padding
def _str_to_sem(self, sem_option):
sem = ir.MEM_SEMANTIC.ACQUIRE_RELEASE
if sem_option:
if sem_option == "acquire":
sem = ir.MEM_SEMANTIC.ACQUIRE
elif sem_option == "release":
sem = ir.MEM_SEMANTIC.RELEASE
elif sem_option == "acq_rel":
sem = ir.MEM_SEMANTIC.ACQUIRE_RELEASE
elif sem_option == "relaxed":
sem = ir.MEM_SEMANTIC.RELAXED
else:
raise ValueError(f"Memory semantic {sem_option} not supported")
return sem
def _str_to_scope(self, scope_option):
scope = ir.MEM_SYNC_SCOPE.GPU
if scope_option:
if scope_option == "gpu":
scope = ir.MEM_SYNC_SCOPE.GPU
elif scope_option == "cta":
scope = ir.MEM_SYNC_SCOPE.CTA
elif scope_option == "sys":
scope = ir.MEM_SYNC_SCOPE.SYSTEM
else:
raise ValueError(f"Memory semantic {scope_option} not supported")
return scope
def _canonicalize_boundary_check(self, boundary_check, block_shape):
if boundary_check:
if not hasattr(boundary_check, "__iter__"):
boundary_check = [boundary_check]
boundary_check = [elem.value if isinstance(elem, tl.constexpr) else elem for elem in boundary_check]
for dim in boundary_check:
assert isinstance(dim, int) and 0 <= dim < len(block_shape)
assert len(boundary_check) > 0
assert len(boundary_check) == len(set(boundary_check)), "Duplicate dimension in `boundary_check`"
return sorted(boundary_check)
return ()
def _load_block_pointer(self, ptr, mask, other, boundary_check, padding, cache, eviction, is_volatile):
# Load by a block pointer: `pointer_type<block_type<>>`
# Block pointer can not have `mask` and `other` arguments
if mask is not None or other is not None:
raise ValueError("`mask` and `other` arguments cannot be specified for loading block pointers")
elt_ty = ptr.type.element_ty.element_ty
assert elt_ty != tl.int1, "`tl.int1` should be rewritten in `tl.make_block_ptr`"
if elt_ty.is_int() and padding == ir.PADDING_OPTION.PAD_NAN:
raise ValueError("Padding option `nan` is not supported for integer block pointers")
# `dst_ty` is de-referenced type of the pointer type
dst_ty = ptr.type.element_ty
# Check `boundary_check` argument
boundary_check = self._canonicalize_boundary_check(boundary_check, dst_ty.get_block_shapes())
# Build IR
return self.tensor(
self.builder.create_tensor_pointer_load(ptr.handle, boundary_check, padding, cache, eviction, is_volatile),
dst_ty)
def _load_legacy(self, ptr, mask, other, boundary_check, padding, cache, eviction, is_volatile):
# Load by a tensor of pointers or a pointer of scalar: `block_type<pointer_type<>>` or `pointer_type<>`
if not ptr.type.scalar.is_ptr():
raise ValueError(f"Unsupported ptr type {ptr.type.__repr__()} in `tl.load`")
# Check `mask`, `other`, `boundary_check`, and `padding` arguments
if mask is None and other is not None:
raise ValueError("`other` cannot be provided without `mask`")
if padding or boundary_check:
raise ValueError("`padding_option` or `boundary_check` argument is not supported for loading a tensor of"
"pointers or loading a scalar. Because the compiler does not know the boundary; please "
"use block pointers (defined by `make_block_ptr`) instead")
# For a pointer of scalar, check the type of `mask` and `other`
if not ptr.type.is_block():
if mask and mask.type.is_block():
raise ValueError("Mask argument cannot be block type if pointer argument is not a block")
if other and other.type.is_block():
raise ValueError("Other argument cannot be block type if pointer argument is not a block")
# Make `mask` and `other` into the same shape as `ptr`
if ptr.type.is_block():
if mask is not None:
ptr, mask = self.broadcast_impl_value(ptr, mask)
if other is not None:
ptr, other = self.broadcast_impl_value(ptr, other)
# Get `pointer_type<elt_ty>` and `elt_ty`
ptr_ty = ptr.type.scalar
elt_ty = ptr_ty.element_ty
# Treat `pointer_type<tl.int1>` as `pointer_type<tl.int8>`
is_bool = elt_ty == tl.int1
if is_bool:
elt_ty = tl.int8
ptr_ty = tl.pointer_type(elt_ty, ptr_ty.address_space)
ptr = self.cast(ptr, ptr_ty)
# Cast `other` into `elt_ty` type
if other is not None:
other = self.cast(other, elt_ty)
# Create loaded result type `dst_ty`
if ptr.type.is_block():
dst_ty = ptr.type.with_element_ty(elt_ty)
else:
# Load by de-referencing the pointer of scalar
dst_ty = elt_ty
# Build IR
if mask is None:
ret = self.tensor(self.builder.create_load(ptr.handle, cache, eviction, is_volatile), dst_ty)
else:
ret = self.tensor(
self.builder.create_masked_load(ptr.handle, mask.handle, other.handle if other else None, cache,
eviction, is_volatile), dst_ty)
if is_bool:
ret = self.cast(ret, tl.int1)
return ret
def load(self, ptr: TensorTy, mask: Optional[TensorTy], other: Optional[TensorTy], boundary_check: Tuple,
padding_option: str, cache_modifier: str, eviction_policy: str, is_volatile: bool) -> TensorTy:
# Cache, eviction and padding options
cache = self._str_to_load_cache_modifier(cache_modifier)
eviction = self._str_to_eviction_policy(eviction_policy)
padding = self._str_to_padding_option(padding_option)
if ptr.type.is_ptr() and ptr.type.element_ty.is_block():
# Load by a block pointer: `pointer_type<block_type<>>`
return self._load_block_pointer(ptr, mask, other, boundary_check, padding, cache, eviction, is_volatile)
else:
# Load by a tensor of pointers or a pointer of scalar: `block_type<pointer_type<>>` or `pointer_type<>`
return self._load_legacy(ptr, mask, other, boundary_check, padding, cache, eviction, is_volatile)
def descriptor_load(self, desc: tl.tensor_descriptor_base, offsets, cache_modifier: str,
eviction_policy: str) -> TensorTy:
assert isinstance(desc, tl.tensor_descriptor_base)
ndim = len(desc.block_shape)
assert len(offsets) == ndim, f"expected {ndim} offsets, but got {len(offsets)}"
offsets = self._convert_to_ir_values(offsets, require_i64=False)
x = self.builder.create_descriptor_load(desc.handle, offsets, self._str_to_load_cache_modifier(cache_modifier),
self._str_to_eviction_policy(eviction_policy))
return self.tensor(x, desc.block_type)
def validate_store_like(self, desc: tl.tensor_descriptor_base, value: TensorTy, offsets) -> None:
assert isinstance(desc, tl.tensor_descriptor_base)
ndim = len(desc.block_shape)
assert len(offsets) == ndim, f"expected {ndim} offsets, but got {len(offsets)}"
assert value.shape == desc.block_shape
def descriptor_store(self, desc: tl.tensor_descriptor_base, value: TensorTy, offsets) -> TensorTy:
self.validate_store_like(desc, value, offsets)
# implicitly cast to the descriptor's type
value = self.cast(value, desc.dtype)
offsets = self._convert_to_ir_values(offsets, require_i64=False)
return self.tensor(self.builder.create_descriptor_store(desc.handle, value.handle, offsets), tl.void)
def descriptor_atomic_add(self, desc: tl.tensor_descriptor_base, value: TensorTy, offsets) -> TensorTy:
self.validate_store_like(desc, value, offsets)
assert desc.dtype in {tl.uint32, tl.int32, tl.uint64, tl.float32, tl.float16, tl.bfloat16}, "Unsupported dtype"
offsets = self._convert_to_ir_values(offsets, require_i64=False)
kind = ir.DESCRIPTOR_REDUCE_KIND.ADD
return self.tensor(self.builder.create_descriptor_reduce(kind, desc.handle, value.handle, offsets), tl.void)
def _has_native_tma(self, ):
target = driver.active.get_current_target()
return (target.backend == "cuda" and target.arch >= 90)
def _descriptor_atomic_min_max_supported(self, dtype):
assert dtype in {tl.uint32, tl.int32, tl.uint64, tl.int64, tl.float16, tl.bfloat16}, "Unsupported dtype"
if dtype in {tl.float16, tl.bfloat16}:
assert self._has_native_tma(), "16-bit float types require native tma support"
def descriptor_atomic_min(self, desc: tl.tensor_descriptor_base, value: TensorTy, offsets) -> TensorTy:
self.validate_store_like(desc, value, offsets)
self._descriptor_atomic_min_max_supported(desc.dtype)
offsets = self._convert_to_ir_values(offsets, require_i64=False)
kind = ir.DESCRIPTOR_REDUCE_KIND.MIN
return self.tensor(self.builder.create_descriptor_reduce(kind, desc.handle, value.handle, offsets), tl.void)
def descriptor_atomic_max(self, desc: tl.tensor_descriptor_base, value: TensorTy, offsets) -> TensorTy:
self.validate_store_like(desc, value, offsets)
self._descriptor_atomic_min_max_supported(desc.dtype)
offsets = self._convert_to_ir_values(offsets, require_i64=False)
kind = ir.DESCRIPTOR_REDUCE_KIND.MAX
return self.tensor(self.builder.create_descriptor_reduce(kind, desc.handle, value.handle, offsets), tl.void)
def descriptor_atomic_and(self, desc: tl.tensor_descriptor_base, value: TensorTy, offsets) -> TensorTy:
self.validate_store_like(desc, value, offsets)
assert desc.dtype in {tl.uint32, tl.int32, tl.uint64, tl.int64}, "Unsupported dtype"
offsets = self._convert_to_ir_values(offsets, require_i64=False)
kind = ir.DESCRIPTOR_REDUCE_KIND.AND
return self.tensor(self.builder.create_descriptor_reduce(kind, desc.handle, value.handle, offsets), tl.void)
def descriptor_atomic_or(self, desc: tl.tensor_descriptor_base, value: TensorTy, offsets) -> TensorTy:
self.validate_store_like(desc, value, offsets)
assert desc.dtype in {tl.uint32, tl.int32, tl.uint64, tl.int64}, "Unsupported dtype"
offsets = self._convert_to_ir_values(offsets, require_i64=False)
kind = ir.DESCRIPTOR_REDUCE_KIND.OR
return self.tensor(self.builder.create_descriptor_reduce(kind, desc.handle, value.handle, offsets), tl.void)
def descriptor_atomic_xor(self, desc: tl.tensor_descriptor_base, value: TensorTy, offsets) -> TensorTy:
self.validate_store_like(desc, value, offsets)
assert desc.dtype in {tl.uint32, tl.int32, tl.uint64, tl.int64}, "Unsupported dtype"
offsets = self._convert_to_ir_values(offsets, require_i64=False)
kind = ir.DESCRIPTOR_REDUCE_KIND.XOR
return self.tensor(self.builder.create_descriptor_reduce(kind, desc.handle, value.handle, offsets), tl.void)
def descriptor_gather(self, desc, x_offsets, y_offset, cache_modifier: str, eviction_policy: str) -> TensorTy:
assert isinstance(desc, tl.tensor_descriptor_base)
assert cache_modifier == "", "cache modifier is not supported yet"
assert eviction_policy == "", "eviction policy is not supported yet"
# Validate descriptor.
assert len(desc.block_shape) == 2, f"descriptor must be 2D, but got {desc.block_shape}"
assert desc.block_shape[0] == 1, f"descriptor block must have 1 row, but got {desc.block_shape}"
# Validate offsets.
assert len(x_offsets.shape) == 1, f"x offsets must be 1D, but got {x_offsets.shape}"
# Validate minimum block size.
assert x_offsets.shape[0] >= 8, f"descriptor gather must have at least 8 rows, but got {x_offsets.shape}"
dtype = desc.dtype
min_cols = 32 // dtype.primitive_bitwidth * 8
assert desc.block_shape[
1] >= min_cols, f"descriptor gather of {dtype} must have at least {min_cols} columns, but got {desc.block_shape[1]}"
type = tl.block_type(desc.dtype, [x_offsets.shape[0], desc.block_shape[1]])
y_offset = self._convert_to_ir_values((y_offset, ), require_i64=False)[0]
x = self.builder.create_descriptor_gather(desc.handle, x_offsets.handle, y_offset, type.to_ir(self.builder))
return self.tensor(x, type)
def descriptor_scatter(self, desc, value: TensorTy, x_offsets, y_offset) -> TensorTy:
assert isinstance(desc, tl.tensor_descriptor_base)
# Validate descriptor.
assert len(desc.block_shape) == 2, f"descriptor must be 2D, but got {desc.block_shape}"
assert desc.block_shape[0] == 1, f"descriptor block must have 1 row, but got {desc.block_shape}"
# Validate offsets.
assert len(x_offsets.shape) == 1, f"x offsets must be 1D, but got {x_offsets.shapae}"
# Validate minimum block size.
assert x_offsets.shape[0] >= 8, f"descriptor scatter must have at least 8 rows, but got {x_offsets.shape}"
dtype = desc.dtype
min_cols = 32 // dtype.primitive_bitwidth * 8
assert desc.block_shape[
1] >= min_cols, f"descriptor scatter of {dtype} must have at least {min_cols} columns, but got {desc.block_shape[1]}"
y_offset = self._convert_to_ir_values((y_offset, ), require_i64=False)[0]
self.builder.create_descriptor_scatter(desc.handle, value.handle, x_offsets.handle, y_offset)
return self.tensor(None, tl.void)
def _store_block_pointer(self, ptr, val, mask, boundary_check, cache, eviction):
# Store by a block pointer: `pointer_type<block_type<>>`
# Block pointers can not have the `mask` argument
if mask is not None:
raise ValueError("`mask` and `other` arguments cannot be specified for loading block pointers")
# Check same shape and element type
block_shape = ptr.type.element_ty.get_block_shapes()
if not val.type.is_block():
val = self.broadcast_impl_shape(val, block_shape)
assert val.type.is_block(), "Value argument must be block type or a scalar"
assert block_shape == val.type.get_block_shapes(
), f"Block shape({block_shape}) and value shape({val.type.get_block_shapes()}) mismatch"
assert ptr.type.element_ty.element_ty == val.type.element_ty, f"Block element type({ptr.type.element_ty.element_ty}) and value element type({val.type.element_ty}) mismatch"
elt_ty = ptr.type.element_ty.element_ty
assert elt_ty != tl.int1, "`tl.int1` should be rewritten in `tl.make_block_ptr`"
# Check `boundary_check` argument
boundary_check = self._canonicalize_boundary_check(boundary_check, block_shape)
# Cast to target data type
val = self.cast(val, elt_ty)
# Build IR
return self.tensor(
self.builder.create_tensor_pointer_store(ptr.handle, val.handle, boundary_check, cache, eviction), tl.void)
def _store_legacy(self, ptr, val, mask, boundary_check, cache, eviction):
# Store by a tensor of pointers or a pointer of scalar: `block_type<pointer_type<>>` or `pointer_type<>`
if not ptr.type.scalar.is_ptr():
raise ValueError(f"Unsupported ptr type {ptr.type.__repr__()} in `tl.store`")
# Check `boundary_check` argument
if boundary_check:
raise ValueError("`boundary_check` argument is not supported for storing a tensor of pointers or storing a "
"scalar. Because the compiler does not know the boundary; please use block pointers "
"(defined by `make_block_ptr`) instead")
# For a pointer of scalar, check the type of `val` and `mask`
if not ptr.type.is_block():
if val.type.is_block():
raise ValueError("Value argument cannot be block type if pointer argument is not a block")
if mask and mask.type.is_block():
raise ValueError("Mask argument cannot be block type if pointer argument is not a block")
# Make `mask` and `val` into the same shape as `ptr`
if ptr.type.is_block():
val = self.broadcast_impl_shape(val, ptr.type.get_block_shapes())
if mask is not None:
mask = self.broadcast_impl_shape(mask, ptr.type.get_block_shapes())
ptr_ty = ptr.type.scalar
elt_ty = ptr_ty.element_ty
# Treat `pointer_type<tl.int1>` as `pointer_type<tl.int8>`
if elt_ty == tl.int1:
elt_ty = tl.int8
ptr_ty = tl.pointer_type(elt_ty, ptr_ty.address_space)
ptr = self.cast(ptr, ptr_ty)
# Cast to target data type
val = self.cast(val, elt_ty)
# Build IR
if mask is None:
return self.tensor(self.builder.create_store(ptr.handle, val.handle, cache, eviction), tl.void)
if not mask.type.scalar.is_bool():
raise ValueError("Mask must have boolean scalar type")
return self.tensor(self.builder.create_masked_store(ptr.handle, val.handle, mask.handle, cache, eviction),
tl.void)
def store(self, ptr: TensorTy, val: TensorTy, mask: Optional[TensorTy], boundary_check, cache_modifier: str,
eviction_policy: str) -> TensorTy:
# Cache and eviction options
cache = self._str_to_store_cache_modifier(cache_modifier)
eviction = self._str_to_eviction_policy(eviction_policy)
if ptr.type.is_const() or ptr.type.scalar.is_const():
raise ValueError("Cannot store to a constant pointer")
if ptr.type.is_ptr() and ptr.type.element_ty.is_block():
# Store by a block pointer: `pointer_type<block_type<>>`
return self._store_block_pointer(ptr, val, mask, boundary_check, cache, eviction)
else:
# Store by a tensor of pointers or a pointer of scalar: `block_type<pointer_type<>>` or `pointer_type<>`
return self._store_legacy(ptr, val, mask, boundary_check, cache, eviction)
#########
# atomic
#########
def atomic_cas(self, ptr: TensorTy, cmp: TensorTy, val: TensorTy, sem: str, scope: str) -> TensorTy:
sem = self._str_to_sem(sem)
scope = self._str_to_scope(scope)
element_ty = ptr.type.scalar.element_ty
if element_ty.primitive_bitwidth not in [16, 32, 64]:
raise ValueError("atomic_cas only supports elements with width {16, 32, 64}")
return self.tensor(self.builder.create_atomic_cas(ptr.handle, cmp.handle, val.handle, sem, scope), val.type)
def atom_red_typechecking_impl(self, ptr: TensorTy, val: TensorTy, mask: TensorTy,
op: str) -> Tuple[TensorTy, TensorTy, TensorTy]:
if not ptr.type.scalar.is_ptr():
raise ValueError("Pointer argument of store instruction is " + ptr.type.__repr__())
if ptr.type.is_const() or ptr.type.element_ty.is_const():
raise ValueError("Cannot store to a constant pointer")
element_ty = ptr.type.scalar.element_ty
if element_ty is tl.float16 and op != 'add':
raise ValueError("atomic_" + op + " does not support fp16")
if element_ty is tl.bfloat16 and op != 'add':
raise ValueError("atomic_" + op + " does not support bf16")
if element_ty in [tl.int16, tl.uint16] or element_ty.primitive_bitwidth < 16:
raise ValueError("atomic_" + op + " does not support " + str(element_ty))
if ptr.type.is_block():
if mask is not None:
mask = self.broadcast_impl_shape(mask, ptr.type.get_block_shapes())
if val is not None:
val = self.broadcast_impl_shape(val, ptr.type.get_block_shapes())
val = self.cast(val, ptr.type.scalar.element_ty)
if mask is None:
mask_ir = self.builder.get_int1(True)
mask_ty = tl.int1
if ptr.type.is_block():
mask_ty = ptr.type.with_element_ty(tl.int1)
mask_ir = self.builder.create_splat(mask_ty.to_ir(self.builder), mask_ir)
mask = self.tensor(mask_ir, mask_ty)
return ptr, val, mask
def _signbit(self, x: TensorTy) -> TensorTy:
bitwidth = x.dtype.primitive_bitwidth
idtype = tl.get_int_dtype(bitwidth=bitwidth, signed=False)
ix = self.bitcast(x, idtype)
signbit = self.lshr(ix, bitwidth - 1)
return self.cast(signbit, tl.int1)
def atomic_max(self, ptr: TensorTy, val: TensorTy, mask: TensorTy, sem: str, scope: str) -> TensorTy:
ptr, val, mask = self.atom_red_typechecking_impl(ptr, val, mask, 'max')
sem = self._str_to_sem(sem)
scope = self._str_to_scope(scope)
sca_ty = val.type.scalar
# direct call to atomic_max for integers
if sca_ty.is_int():
if sca_ty.is_int_signed():
return self.tensor(
self.builder.create_atomic_rmw(ir.ATOMIC_OP.MAX, ptr.handle, val.handle, mask.handle, sem, scope),
val.type)
else:
return self.tensor(
self.builder.create_atomic_rmw(ir.ATOMIC_OP.UMAX, ptr.handle, val.handle, mask.handle, sem, scope),
val.type)
# for float
# return atomic_smax(i_ptr, i_val) if val >= 0
# return atomic_umin(i_ptr, i_val) if val < 0
if sca_ty not in {tl.float32, tl.float64}:
raise TypeError(f"atomic_max not supported for dtype {sca_ty}")
i_type = tl.int32 if sca_ty == tl.float32 else tl.int64
i_val = self.bitcast(val, i_type)
i_ptr = self.bitcast(ptr, tl.pointer_type(i_type, 1))
ui_type = tl.uint32 if sca_ty == tl.float32 else tl.uint64
ui_val = self.bitcast(val, ui_type)
ui_ptr = self.bitcast(ptr, tl.pointer_type(ui_type, 1))
neg = self._signbit(val)
pos = self.not_(neg)
pos_ret = self.tensor(
self.builder.create_atomic_rmw(ir.ATOMIC_OP.MAX, i_ptr.handle, i_val.handle,
self.and_(mask, pos).handle, sem, scope), i_val.type)
neg_ret = self.tensor(
self.builder.create_atomic_rmw(ir.ATOMIC_OP.UMIN, ui_ptr.handle, ui_val.handle,
self.and_(mask, neg).handle, sem, scope), ui_val.type)
ret = self.where(pos, pos_ret, neg_ret)
return self.bitcast(ret, sca_ty)
def atomic_min(self, ptr: TensorTy, val: TensorTy, mask: TensorTy, sem: str, scope: str) -> TensorTy:
ptr, val, mask = self.atom_red_typechecking_impl(ptr, val, mask, 'min')
sem = self._str_to_sem(sem)
scope = self._str_to_scope(scope)
sca_ty = val.type.scalar
# direct call to atomic_min for integers
if sca_ty.is_int():
if sca_ty.is_int_signed():
return self.tensor(
self.builder.create_atomic_rmw(ir.ATOMIC_OP.MIN, ptr.handle, val.handle, mask.handle, sem, scope),
val.type)
else:
return self.tensor(
self.builder.create_atomic_rmw(ir.ATOMIC_OP.UMIN, ptr.handle, val.handle, mask.handle, sem, scope),
val.type)
# for float
# return atomic_smin(i_ptr, i_val) if val >= 0
# return atomic_umax(i_ptr, i_val) if val < 0
if sca_ty not in {tl.float32, tl.float64}:
raise TypeError(f"atomic_min not supported for dtype {sca_ty}")
i_type = tl.int32 if sca_ty == tl.float32 else tl.int64
i_val = self.bitcast(val, i_type)
i_ptr = self.bitcast(ptr, tl.pointer_type(i_type, 1))
ui_type = tl.uint32 if sca_ty == tl.float32 else tl.uint64
ui_val = self.bitcast(val, ui_type)
ui_ptr = self.bitcast(ptr, tl.pointer_type(ui_type, 1))
neg = self._signbit(val)
pos = self.not_(neg)
pos_ret = self.tensor(
self.builder.create_atomic_rmw(ir.ATOMIC_OP.MIN, i_ptr.handle, i_val.handle,
self.and_(mask, pos).handle, sem, scope), i_val.type)
neg_ret = self.tensor(
self.builder.create_atomic_rmw(ir.ATOMIC_OP.UMAX, ui_ptr.handle, ui_val.handle,
self.and_(mask, neg).handle, sem, scope), ui_ptr.type)
ret = self.where(pos, pos_ret, neg_ret)
return self.bitcast(ret, sca_ty)
def atomic_add(self, ptr: TensorTy, val: TensorTy, mask: TensorTy, sem: str, scope: str) -> TensorTy:
ptr, val, mask = self.atom_red_typechecking_impl(ptr, val, mask, 'add')
sem = self._str_to_sem(sem)
scope = self._str_to_scope(scope)
sca_ty = val.type.scalar
op = ir.ATOMIC_OP.FADD if sca_ty.is_floating() else ir.ATOMIC_OP.ADD
return self.tensor(self.builder.create_atomic_rmw(op, ptr.handle, val.handle, mask.handle, sem, scope),
val.type)
def atomic_and(self, ptr: TensorTy, val: TensorTy, mask: TensorTy, sem: str, scope: str) -> TensorTy:
ptr, val, mask = self.atom_red_typechecking_impl(ptr, val, mask, 'and')
sem = self._str_to_sem(sem)
scope = self._str_to_scope(scope)
return self.tensor(
self.builder.create_atomic_rmw(ir.ATOMIC_OP.AND, ptr.handle, val.handle, mask.handle, sem, scope), val.type)
def atomic_or(self, ptr: TensorTy, val: TensorTy, mask: TensorTy, sem: str, scope: str) -> TensorTy:
ptr, val, mask = self.atom_red_typechecking_impl(ptr, val, mask, 'or')
sem = self._str_to_sem(sem)
scope = self._str_to_scope(scope)
return self.tensor(
self.builder.create_atomic_rmw(ir.ATOMIC_OP.OR, ptr.handle, val.handle, mask.handle, sem, scope), val.type)
def atomic_xor(self, ptr: TensorTy, val: TensorTy, mask: TensorTy, sem: str, scope: str) -> TensorTy:
ptr, val, mask = self.atom_red_typechecking_impl(ptr, val, mask, 'xor')
sem = self._str_to_sem(sem)
scope = self._str_to_scope(scope)
return self.tensor(
self.builder.create_atomic_rmw(ir.ATOMIC_OP.XOR, ptr.handle, val.handle, mask.handle, sem, scope), val.type)
def atomic_xchg(self, ptr: TensorTy, val: TensorTy, mask: TensorTy, sem: str, scope: str) -> TensorTy:
ptr, val, mask = self.atom_red_typechecking_impl(ptr, val, mask, 'xchg')
sem = self._str_to_sem(sem)
scope = self._str_to_scope(scope)
return self.tensor(
self.builder.create_atomic_rmw(ir.ATOMIC_OP.XCHG, ptr.handle, val.handle, mask.handle, sem, scope),
val.type)
# ===----------------------------------------------------------------------===//
# Linear Algebra
# ===----------------------------------------------------------------------===//
def _str_to_dot_input_precision(self, input_precision):
assert input_precision.lower() in self.builder.options.allowed_dot_input_precisions, \
f"input_precision must be one of {self.builder.options.allowed_dot_input_precisions}. Got {input_precision}"
input_precision = input_precision.upper()
if input_precision == "TF32X3":
input_precision = "TF32x3"
return getattr(ir.INPUT_PRECISION, input_precision)
def dot(self, lhs: TensorTy, rhs: TensorTy, acc: TensorTy, input_precision: Optional[str],
max_num_imprecise_acc: int, out_dtype: tl.dtype) -> TensorTy:
assert lhs.type.is_block() and rhs.type.is_block()
if lhs.dtype.is_fp8() and rhs.dtype.is_fp8():
# All combinations of supported fp8 x fp8 are permitted
pass
else:
assert lhs.dtype in (tl.int8, tl.uint8, tl.float16, tl.bfloat16, tl.float32,
tl.float64), f"Unsupported lhs dtype {lhs.dtype}"
assert rhs.dtype in (tl.int8, tl.uint8, tl.float16, tl.bfloat16, tl.float32,
tl.float64), f"Unsupported rhs dtype {rhs.dtype}"
assert lhs.dtype == rhs.dtype, f"Both operands must be same dtype. Got {lhs.dtype} and {rhs.dtype}"
if lhs.dtype.is_fp8e4b15() or rhs.dtype.is_fp8e4b15():
if "fp8e4b15" in self.builder.options.deprecated_fp8_dot_operand_dtypes:
warnings.warn(
"the use of fp8e4b15 is deprecated on Hopper and later architectures and can cause significant slow down. It will be removed in a future triton release"
)
# We upcast because there's no fp8e4b15 type in MLIR
lhs = self.cast(lhs, tl.float16)
rhs = self.cast(rhs, tl.float16)
uses_fp8e4b8 = lhs.dtype.is_fp8e4b8() or rhs.dtype.is_fp8e4b8()
uses_fp8e5b16 = lhs.dtype.is_fp8e5b16() or rhs.dtype.is_fp8e5b16()
if uses_fp8e4b8 or uses_fp8e5b16:
type_name = "fp8e4b8" if uses_fp8e4b8 else "fp8e5b16"
if type_name in self.builder.options.deprecated_fp8_dot_operand_dtypes:
arch = self.builder.options.arch
warnings.warn(
f"{type_name} is AMD gfx942 specific and not supported on {arch} so it's upcasted to fp16 and can cause significant slow down. "
f"Please use OCP fp8 variants on {arch} for performance")
lhs = self.cast(lhs, tl.float16)
rhs = self.cast(rhs, tl.float16)
if input_precision is None:
input_precision = self.builder.options.default_dot_input_precision
input_precision = self._str_to_dot_input_precision(input_precision)
lhs_rank = len(lhs.shape)
rhs_rank = len(rhs.shape)
assert lhs_rank == rhs_rank == 2 or lhs_rank == rhs_rank == 3, f"Both inputs must be either 2D or 3D; (lhs: {lhs.shape} vs rhs: {rhs.shape})"
assert lhs.shape[-1].value == rhs.shape[
-2].value, f"First input shape ({lhs.shape}) and second input shape {rhs.shape} are not compatible for matmul (second index of first shape ({lhs.shape[-1].value}) must be equal to first index of second shape ({rhs.shape[-2].value})"
assert self.builder.codegen_fns.get(
"min_dot_size") is not None, "target doesn't provide lower shape bounds for dot."
min_dot_size = self.builder.codegen_fns["min_dot_size"](lhs.type, rhs.type)
assert lhs.shape[-2].value >= min_dot_size[0] and lhs.shape[-1].value >= min_dot_size[2] \
and rhs.shape[-1].value >= min_dot_size[1], \
f"Input shapes should have M >= {min_dot_size[0]}, N >= {min_dot_size[1]} and K >= {min_dot_size[2]}"
if lhs.type.scalar.is_int():
assert lhs.type.scalar == tl.int8, "only int8 supported!"
_0 = self.builder.get_int32(0)
ret_scalar_ty = tl.int32
elif out_dtype.is_bf16():
raise ValueError(
"out_dtype=bfloat16 is unsupported. Please use out_dtype=float32/float16 and cast with `.to(tl.bfloat16)`"
)
elif lhs.type.scalar.is_fp32() or lhs.type.scalar.is_bf16():
_0 = self.builder.get_fp32(0)
ret_scalar_ty = tl.float32
elif lhs.type.scalar.is_fp64():
_0 = self.builder.get_fp64(0)
ret_scalar_ty = tl.float64
else:
_0 = self.builder.get_fp16(0) if out_dtype.is_fp16() else self.builder.get_fp32(0)
ret_scalar_ty = out_dtype
M = lhs.type.shape[-2]
N = rhs.type.shape[-1]
K = lhs.type.shape[-1]
B = lhs.type.shape[0] if lhs_rank == 3 else None
ret_ty = tl.block_type(ret_scalar_ty, [B, M, N] if B else [M, N])
if acc is None:
acc_handle = self.builder.create_splat(ret_ty.to_ir(self.builder), _0)
else:
acc_handle = acc.handle
assert acc.type.shape == ret_ty.shape and acc.type.element_ty == out_dtype
# max_num_imprecise_acc only applies to fp8 -> fp32 dot on sm_90
if max_num_imprecise_acc is None:
if lhs.dtype.is_fp8() and rhs.dtype.is_fp8():
max_num_imprecise_acc = self.builder.options.max_num_imprecise_acc_default
else:
max_num_imprecise_acc = 0
else:
if lhs.dtype.is_fp8() and rhs.dtype.is_fp8() and max_num_imprecise_acc > K:
raise ValueError(f"max_num_imprecise_acc ({max_num_imprecise_acc}) must be <= K ({K})")
return self.tensor(
self.builder.create_dot(lhs.handle, rhs.handle, acc_handle, input_precision, max_num_imprecise_acc), ret_ty)
def _str_to_fp_type(self, float_format: str):
ty_enum = getattr(ir.ScaleDotElemTypeTY, float_format.upper(), None)
if ty_enum is None:
raise ValueError(f"Invalid float format: {float_format}.")
return ty_enum
def _bitcast_to_fp_type(self, val: TensorTy, float_format: str):
"""
If float_format is subbyte, make sure it's packed as uint8 and return it.
Otherwise, return a tensor (perhaps bitcasting) of the specified float format.
"""
triton_ty = {"e5m2": tl.float8e5, "e4m3": tl.float8e4nv, "bf16": tl.bfloat16, "fp16":
tl.float16}.get(float_format)
if triton_ty is None:
assert float_format == "e2m1", f"Internal Error: Unexpected float format: {float_format}"
assert val.dtype == tl.uint8, f"e2m1 format must be packed as uint8. Got {val.dtype}"
return val
if val.dtype == triton_ty:
return val
else:
unsigned_ty = {"e5m2": tl.uint8, "e4m3": tl.uint8, "bf16": tl.uint16, "fp16": tl.uint16}[float_format]
assert val.dtype == unsigned_ty, f"Unexpected dtype for {float_format}. Got {val.dtype}"
return self.bitcast(val, triton_ty)
def dot_scaled(self, lhs: TensorTy, lhs_scale: TensorTy, lhs_format: str, rhs: TensorTy,
rhs_scale: Optional[TensorTy], rhs_format: str, acc: TensorTy | None, fast_math: bool,
lhs_k_pack: bool, rhs_k_pack: bool, out_dtype: tl.dtype) -> TensorTy:
assert lhs.type.is_block() and rhs.type.is_block()
#TODO: validate types.
lhs_rank = len(lhs.shape)
rhs_rank = len(rhs.shape)
assert lhs_rank == rhs_rank == 2 or lhs_rank == rhs_rank == 3, f"Both inputs must be either 2D or 3D; (lhs: {lhs.shape} vs rhs: {rhs.shape})"
lhs_format: str = lhs_format.value
rhs_format: str = rhs_format.value
lhs_format_enum = self._str_to_fp_type(lhs_format)
rhs_format_enum = self._str_to_fp_type(rhs_format)
allowed_formats = {"e2m1", "e4m3", "e5m2", "bf16", "fp16"}
assert lhs_format in allowed_formats, f"NYI: lhs_format {lhs_format}"
assert rhs_format in allowed_formats, f"NYI: rhs_format {rhs_format}"
rhs_scale_is_none = rhs_scale is None or (isinstance(rhs_scale, tl.constexpr) and rhs_scale.value is None)
lhs_scale_is_none = lhs_scale is None or (isinstance(lhs_scale, tl.constexpr) and lhs_scale.value is None)
lhs = self._bitcast_to_fp_type(lhs, lhs_format)
rhs = self._bitcast_to_fp_type(rhs, rhs_format)
assert lhs_k_pack or lhs_format == "e2m1", "only mxfp4 inputs can be packed along a dimension different than K"
assert rhs_k_pack or rhs_format == "e2m1", "only mxfp4 inputs can be packed along a dimension different than K"
M, K_LHS = lhs.type.shape[-2:]
K_RHS, N = rhs.type.shape[-2:]
PACKED_A = 2 if lhs_format == "e2m1" else 1
PACKED_B = 2 if rhs_format == "e2m1" else 1
PACKED_A_DIM = PACKED_A * K_LHS if lhs_k_pack else K_LHS
PACKED_B_DIM = PACKED_B * K_RHS if rhs_k_pack else K_RHS
assert PACKED_B_DIM == PACKED_A_DIM, f"Reduction dimension should pack the same number of elements; (lhs: {lhs.shape} vs rhs: {rhs.shape})"
#assert K * PACKED_B >= 64, f"scaled_dot NYI for K < 64. Got {K=}"
B = lhs.type.shape[0] if lhs_rank == 3 else None
if not lhs_k_pack:
M = M * PACKED_A
if not rhs_k_pack:
N = N * PACKED_B
ret_ty = tl.block_type(out_dtype, [B, M, N] if B else [M, N])
_0 = self.builder.get_fp32(0)
if acc is None:
acc_handle = self.builder.create_splat(ret_ty.to_ir(self.builder), _0)
else:
acc_handle = acc.handle
assert acc.type.shape == ret_ty.shape and acc.type.element_ty == out_dtype
rhs_scale_handle = None if rhs_scale_is_none else rhs_scale.handle
lhs_scale_handle = None if lhs_scale_is_none else lhs_scale.handle
return self.tensor(
self.builder.create_dot_scaled(lhs.handle, lhs_scale_handle, lhs_format_enum, rhs.handle, rhs_scale_handle,
rhs_format_enum, fast_math, lhs_k_pack, rhs_k_pack, acc_handle), ret_ty)
# ===----------------------------------------------------------------------===//
# Indexing
# ===----------------------------------------------------------------------===//
def where(self, condition: TensorTy, x: TensorTy, y: TensorTy) -> TensorTy:
if condition.dtype != tl.int1:
warnings.warn(
f"tl.where with a non-boolean condition is deprecated and will error out in a future triton release. Got {condition.dtype}"
)
condition = self.cast(condition, tl.int1)
x, y = self.binary_op_type_checking_impl(x, y, True, True)
# x, y are broadcasted
if condition.type.is_block():
condition, x = self.broadcast_impl_value(condition, x)
x, y = self.broadcast_impl_value(x, y)
else:
condition, _ = self.broadcast_impl_value(condition, x)
ret_ty = x.type
return self.tensor(self.builder.create_select(condition.handle, x.handle, y.handle), ret_ty)
# ===----------------------------------------------------------------------===//
# Reduction
# ===----------------------------------------------------------------------===
def wrap_tensor(self, x, scalar_ty, ret_shape):
if ret_shape:
res_ty = tl.block_type(scalar_ty, ret_shape)
else:
# 0d-tensor -> scalar
res_ty = scalar_ty
return self.tensor(x, res_ty)
def reduction(self, inputs: Sequence[TensorTy], axis: int, region_builder_fn) -> Tuple[TensorTy, ...]:
if axis is None:
inputs = tuple(self.reshape(t, [t.numel.value], can_reorder=True) for t in inputs)
axis = 0
# get result shape
shape = inputs[0].type.shape
rank = len(shape)
assert axis < rank, f"reduction axis must be < inputs rank ({rank})"
ret_shape = [s for i, s in enumerate(shape) if i != axis]
assert all(t.type.shape == shape for t in inputs), "all reduction inputs must have the same shape"
reduce_op = self.builder.create_reduce([t.handle for t in inputs], axis)
region_builder_fn(reduce_op)
assert reduce_op.verify()
return tuple(
self.wrap_tensor(reduce_op.get_result(i), inputs[i].type.scalar, ret_shape) for i in range(len(inputs)))
# ===----------------------------------------------------------------------===
# Associative Scan
# ===----------------------------------------------------------------------===
def associative_scan(self, inputs: Sequence[TensorTy], axis: int, region_builder_fn,
reverse: bool) -> Tuple[TensorTy, ...]:
shape = inputs[0].type.shape
rank = len(shape)
assert -rank <= axis < rank, f"scan axis {axis} must be < inputs rank ({rank})"
if axis < 0:
axis += rank
for t in inputs:
assert t.type.shape == shape, "all scan inputs must have the same shape"
scan_op = self.builder.create_scan([t.handle for t in inputs], axis, reverse)
region_builder_fn(scan_op)
assert scan_op.verify()
return tuple(self.wrap_tensor(scan_op.get_result(i), inputs[i].type.scalar, shape) for i in range(len(inputs)))
# ===----------------------------------------------------------------------===
# Gather
# ===----------------------------------------------------------------------===
def gather(self, src: TensorTy, index: TensorTy, axis: int) -> TensorTy:
assert index.dtype.is_int(), "index must be an integer tensor"
rank = len(src.type.shape)
assert len(index.type.shape) == rank, "source and index tensors must have the same rank"
assert -rank <= axis < rank, f"gather axis {axis} must be < source rank ({rank})"
if axis < 0:
axis += rank
for d in range(rank):
if d == axis:
continue
assert index.type.shape[d] == src.type.shape[d], f"index dim {axis} must match the corresponding source dim"
gather = self.builder.create_gather(src.handle, index.handle, axis)
return self.wrap_tensor(gather, src.type.scalar, index.type.shape)
# ===----------------------------------------------------------------------===
# Map Elementwise
# ===----------------------------------------------------------------------===
def broadcast_tensors(self, *inputs):
if not inputs:
return ()
head, *tail = inputs
for i in range(len(tail)):
head, tail[i] = self.broadcast_impl_value(head, tail[i])
for i in range(len(tail)):
head, tail[i] = self.broadcast_impl_value(head, tail[i])
return (head, *tail)
def map_elementwise(self, inputs: Sequence[tl.tensor], result_types: Sequence[tl.dtype], pack: int,
region_builder_fn) -> Tuple[tl.tensor, ...]:
inputs = self.broadcast_tensors(*inputs)
assert len(inputs) > 0, "map_elementwise must have at least 1 input tensor"
result_types = [inputs[0].type.with_element_ty(ty.scalar) for ty in result_types]
elementwise_op = self.builder.create_map_elementwise(
[t.handle for t in inputs],
[ty.to_ir(self.builder) for ty in result_types],
pack,
)
region_builder_fn(elementwise_op)
# assert elementwise_op.verify()
return tuple(self.tensor(elementwise_op.get_result(i), ty) for i, ty in enumerate(result_types))
# ===----------------------------------------------------------------------===
# Histogram
# ===----------------------------------------------------------------------===
def histogram(self, input: TensorTy, num_bins: int, mask: Optional[TensorTy]) -> TensorTy:
assert len(input.shape) == 1, "histogram only supports 1D input"
assert input.dtype.is_int(), "histogram only supports integer input"
if mask is not None:
mask = self.broadcast_impl_shape(mask, input.shape)
if not mask.type.scalar.is_bool():
raise ValueError("Mask must have boolean scalar type")
mask = mask.handle
return self.tensor(self.builder.create_histogram(input.handle, num_bins, mask),
tl.block_type(tl.int32, [num_bins]))
def multiple_of(self, x: TensorTy, values: List[int]) -> TensorTy:
if max(1, len(x.shape)) != len(values):
raise ValueError("Shape of input to multiple_of does not match the length of values")
x.handle.set_attr("tt.divisibility", ir.make_attr(values, x.handle.get_context()))
return x
def max_contiguous(self, x: TensorTy, values: List[int]) -> TensorTy:
if len(x.shape) != len(values):
raise ValueError("Shape of input to max_contiguous does not match the length of values")
x.handle.set_attr("tt.contiguity", ir.make_attr(values, x.handle.get_context()))
return x
def max_constancy(self, x: TensorTy, values: List[int]) -> TensorTy:
if len(x.shape) != len(values):
raise ValueError("Shape of input to max_constancy does not match the length of values")
x.handle.set_attr("tt.constancy", ir.make_attr(values, x.handle.get_context()))
return x
def debug_barrier(self) -> TensorTy:
return self.tensor(self.builder.create_barrier(), tl.void)
def device_print(self, prefix: str, args: List[TensorTy], hex: bool) -> TensorTy:
# It makes sense visually for prefix to end in ": "; make it so. Also,
# non-empty prefixes should start with " ".
if not prefix.endswith(" ") and args:
prefix += " "
if not prefix.endswith(": ") and args:
prefix = prefix[:-1] + ": "
if len(prefix) > 2 and not prefix.startswith(" "):
prefix = " " + prefix
new_args = [arg.handle for arg in args]
is_signed = [arg.dtype.is_int_signed() for arg in args]
return self.tensor(self.builder.create_print(prefix, hex, new_args, is_signed), tl.void)
def device_assert(self, cond: TensorTy, msg: str, mask: Optional[TensorTy]) -> TensorTy:
if not self.builder.options.debug:
return
if mask is not None:
cond = self.or_(cond, self.not_(mask))
return self.tensor(self.builder.create_assert(cond.handle, msg), tl.void)
def assume(self, cond) -> TensorTy:
return self.tensor(self.builder.create_assume(cond.handle), tl.void)
def _convert_elem_to_ir_value(self, elem, require_i64):
if isinstance(elem, int):
elem = tl.constexpr(elem)
if isinstance(elem, tl.constexpr):
if isinstance(elem.value, bool):
return self.builder.get_int1(elem.value)
if require_i64:
assert -2**63 <= elem.value < 2**63, f"Block pointers only support 64 bit `shape/strides`, " \
f"got a value {elem.value} which is out of the range"
return self.builder.get_int64(elem.value)
else:
assert -2**31 <= elem.value < 2**31, f"Block pointers only support 32 bit `offsets/block_shape`, " \
f"got a value {elem.value} which is out of the range"
return self.builder.get_int32(elem.value)
elif isinstance(elem, tl.tensor):
assert elem.numel.value == 1, "Expected a scalar in shape/strides/offsets"
assert elem.dtype.is_int(), "Expected an integer scalar type in shape/strides/offsets"
if elem.dtype != tl.int64 and require_i64:
return self.builder.create_int_cast(elem.handle, self.builder.get_int64_ty(),
elem.dtype.is_int_signed())
elif elem.dtype == tl.int64 and not require_i64:
assert False, "Block pointers only support 32 bit `offsets/block_shape`, " \
"add a `.to(tl.int32)` or use regular indexing for 64 bit support"
return elem.handle
assert False, f"Unsupported element type in shape/strides/offsets: {type(elem)}"
def _convert_to_ir_values(self, list_like, require_i64=True):
if hasattr(list_like, "__iter__"):
return [self._convert_elem_to_ir_value(elem, require_i64) for elem in list_like]
return [self._convert_elem_to_ir_value(list_like, require_i64)]
def make_block_ptr(self, base: TensorTy, shape, strides, offsets, block_shape, order) -> TensorTy:
# Convert dynamic arguments to IR values
# NOTES(Chenggang): current `shape/strides` are `int64_t`, while `offsets/block_shape` are `int32_t`
shape = self._convert_to_ir_values(shape)
strides = self._convert_to_ir_values(strides)
offsets = self._convert_to_ir_values(offsets, require_i64=False)
# Check `base` type
if not base.type.is_ptr() or base.type.element_ty.is_block():
raise ValueError("Expected `base` to be a pointer type (but not a block pointer type or others)")
# Treat `pointer_type<tl.int1>` as `pointer_type<tl.int8>`
if base.type.element_ty == tl.int1:
base = self.cast(base, tl.pointer_type(tl.int8, base.type.address_space))
# Check whether `block_shape` is static
if not hasattr(block_shape, "__iter__"):
block_shape = [block_shape]
block_shape = [elem.value if isinstance(elem, tl.constexpr) else elem for elem in block_shape]
assert all(isinstance(elem, int) and -2**31 <= elem < 2**31 for elem in block_shape), \
"Expected a list of constant integers (`int32_t` range) in `block_shape`"
# Check `order`
if not hasattr(order, "__iter__"):
order = [order]
order = [elem.value if isinstance(elem, tl.constexpr) else elem for elem in order]
assert sorted(order) == list(range(len(order))), "Expected a permutation of (0, 1, ..., len(order)-1) in order"
# Must have same length
assert all(len(block_shape) == len(list_like) for list_like in [shape, strides, offsets, order]), \
"Expected shape/strides/offsets/block_shape to have the same length"
# Build value, the type is:
# `pointer_type<blocked<shape, element_type>>` in Python
# `tt.ptr<tensor<shape, element_type>>` in MLIR
handle = self.builder.create_make_block_ptr(base.handle, shape, strides, offsets, block_shape, order)
return self.tensor(handle, tl.pointer_type(tl.block_type(base.type.element_ty, block_shape)))
def advance(self, base: TensorTy, offsets) -> TensorTy:
# Convert dynamic offsets to IR values
offsets = self._convert_to_ir_values(offsets, require_i64=False)
# Advanced block pointer type is the same as before
return self.tensor(self.builder.create_advance(base.handle, offsets), base.type)
def make_tensor_descriptor(self, base: TensorTy, shape: List[TensorTy], strides: List[TensorTy],
block_shape: List[tl.constexpr], padding_option: str = "zero") -> tl.tensor_descriptor:
ndim = len(shape)
if not (1 <= ndim <= 5):
raise ValueError(f"Expected 1 <= ndim <= 5 but got {ndim} dimensions")
if len(strides) != ndim:
raise ValueError(f"Expected {ndim} strides but got {len(strides)}")
if len(block_shape) != ndim:
raise ValueError(f"Expected block_shape to have {ndim} dimensions but got {len(strides)}")
assert isinstance(base.dtype, tl.pointer_type)
elem_size = base.dtype.element_ty.primitive_bitwidth // 8
contig_dim_size = tl._unwrap_if_constexpr(block_shape[-1])
if contig_dim_size * elem_size < 16:
raise ValueError(
f"Descriptor block shape must have at least 16 bytes in the last dimension, but got {contig_dim_size} * {elem_size} = {contig_dim_size * elem_size} bytes"
)
last_stride = tl._unwrap_if_constexpr(strides[-1])
if last_stride != 1:
raise ValueError(f"Tensor descriptor last dim must be 1 but got {last_stride}")
shape = [self.make_scalar(x, tl.int32) for x in shape]
strides = [self.make_scalar(tl._unwrap_if_constexpr(x), tl.int64) for x in strides]
# Check whether `block_shape` is static
block_shape = tl._unwrap_shape(block_shape)
assert isinstance(base.type, tl.pointer_type)
type = tl.block_type(base.type.element_ty, block_shape)
base_handle = base.handle
is_signed_int = base.type.element_ty.is_int_signed()
padding = self._str_to_padding_option(padding_option)
if base.type.element_ty.is_int() and padding == ir.PADDING_OPTION.PAD_NAN:
raise ValueError("Padding option `nan` is not supported for integer blocks")
handle = self.builder.create_make_tensor_descriptor(base_handle, [s.handle for s in shape],
[s.handle for s in strides], block_shape, is_signed_int,
padding)
return tl.tensor_descriptor(handle, shape, strides, type)