DriverTrac/venv/lib/python3.12/site-packages/triton/runtime/autotuner.py
2025-11-28 09:08:33 +05:30

477 lines
20 KiB
Python

from __future__ import annotations
import builtins
import time
import inspect
import hashlib
import json
from functools import cached_property
from typing import Dict, Tuple, List, Optional
from .. import knobs
from .jit import KernelInterface, JITFunction
from .errors import OutOfResources, PTXASError
from .driver import driver
from .cache import get_cache_manager, triton_key
from triton._C.libtriton import get_cache_invalidating_env_vars
class Autotuner(KernelInterface):
def __init__(self, fn, arg_names, configs, key, reset_to_zero, restore_value, pre_hook=None, post_hook=None,
prune_configs_by: Optional[Dict] = None, warmup=None, rep=None, use_cuda_graph=False, do_bench=None,
cache_results=False):
"""
:param prune_configs_by: a dict of functions that are used to prune configs, fields:
'perf_model': performance model used to predicate running time with different configs, returns running time
'top_k': number of configs to bench
'prune_num_stages_by'(optional): a function used to prune num_stages. It takes configs:List[Config] as its input, and returns pruned configs.
"""
if not configs:
self.configs = [Config({}, num_warps=4, num_stages=3, num_ctas=1)]
else:
self.configs = configs
self.keys = key
self.cache: Dict[Tuple, Config] = {}
self.arg_names = arg_names
self.cache_results = cache_results or (knobs.autotuning.cache and not knobs.runtime.interpret)
# Reset to zero or restore values
self.reset_to_zero = []
if reset_to_zero is not None:
self.reset_to_zero = list(reset_to_zero)
self.restore_value = []
if restore_value is not None:
self.restore_value = list(restore_value)
# Hook to reset or restore for required tensors
self.pre_hook = lambda kwargs, reset_only=False: 0
self.post_hook = lambda kwargs, exception: 0
self.user_defined_pre_hook = False
self.user_defined_post_hook = False
if pre_hook:
self.pre_hook = pre_hook
self.user_defined_pre_hook = True
elif (len(self.reset_to_zero) > 0 or len(self.restore_value) > 0):
def _pre_hook(kwargs, reset_only=False):
for name in self.reset_to_zero:
kwargs[name].zero_()
if not reset_only:
self.restore_copies = {name: kwargs[name].clone() for name in self.restore_value}
self.pre_hook = _pre_hook
if post_hook:
self.post_hook = post_hook
self.user_defined_post_hook = True
elif len(self.restore_value) > 0:
def _post_hook(kwargs, exception):
for name in self.restore_value:
kwargs[name].copy_(self.restore_copies[name])
self.restore_copies = {}
self.post_hook = _post_hook
self.perf_model = None
self.configs_top_k = 1.0
self.early_config_prune = None
if prune_configs_by:
self.perf_model = prune_configs_by.get("perf_model", self.perf_model)
self.configs_top_k = prune_configs_by.get("top_k", self.configs_top_k)
self.early_config_prune = prune_configs_by.get("early_config_prune", self.early_config_prune)
self.fn = fn
self.base_fn = fn
while not inspect.isfunction(self.base_fn):
self.base_fn = self.base_fn.fn
self._do_bench = do_bench
self.num_warmups = warmup
self.num_reps = rep
self.use_cuda_graph = use_cuda_graph
# If we got explicitly called via the old interface, raise a warning
# and proceed with the old behavior.
if warmup is not None or rep is not None or use_cuda_graph:
import warnings
warnings.warn(("warmup, rep, and use_cuda_graph parameters are deprecated. See "
"https://github.com/triton-lang/triton/pull/4496 for details."), DeprecationWarning,
stacklevel=1)
if use_cuda_graph:
from ..testing import do_bench_cudagraph
self._do_bench = lambda kernel_call, quantiles: do_bench_cudagraph(
kernel_call,
rep=rep if rep is not None else 100,
quantiles=quantiles,
)
return
import triton.testing
self._do_bench = lambda kernel_call, quantiles: triton.testing.do_bench(
kernel_call,
warmup=warmup if warmup is not None else 25,
rep=rep if rep is not None else 100,
quantiles=quantiles,
)
return
@cached_property
def do_bench(self):
if self._do_bench is None:
return driver.active.get_benchmarker()
return self._do_bench
def _bench(self, *args, config, **meta):
from ..compiler.errors import CompileTimeAssertionFailure
verbose = knobs.autotuning.print
if verbose:
print(f"Autotuning kernel {self.base_fn.__name__} with config {config}")
# check for conflicts, i.e. meta-parameters both provided
# as kwargs and by the autotuner
conflicts = meta.keys() & config.kwargs.keys()
if conflicts:
raise ValueError(f"Conflicting meta-parameters: {', '.join(conflicts)}."
" Make sure that you don't re-define auto-tuned symbols.")
# augment meta-parameters with tunable ones
current = dict(meta, **config.all_kwargs())
full_nargs = {**self.nargs, **current}
def kernel_call():
if config.pre_hook:
config.pre_hook(full_nargs)
self.pre_hook(full_nargs)
try:
self.fn.run(
*args,
**current,
)
except Exception as e:
try:
self.post_hook(full_nargs, exception=e)
finally:
# Throw exception raised by `self.fn.run`
raise
self.post_hook(full_nargs, exception=None)
try:
return self.do_bench(kernel_call, quantiles=(0.5, 0.2, 0.8))
except (OutOfResources, CompileTimeAssertionFailure, PTXASError) as e:
if verbose:
print(f"Autotuning failed with {e}")
return [float("inf"), float("inf"), float("inf")]
def check_disk_cache(self, tuning_key, configs, bench_fn):
# We can't serialize prehooks, so just give up and run the benchmarks.
if not tuning_key or any(cfg.pre_hook for cfg in configs):
bench_fn()
return False
from triton.compiler.compiler import make_backend
fn = self.fn
while not isinstance(fn, JITFunction):
fn = fn.fn
env_vars = get_cache_invalidating_env_vars()
cache_key = [
triton_key(),
make_backend(driver.active.get_current_target()).hash(),
fn.cache_key,
str(sorted(env_vars.items())),
str(tuning_key),
] + [str(c) for c in configs]
cache_key = hashlib.sha256("-".join(cache_key).encode("utf-8")).hexdigest()
cache = get_cache_manager(cache_key)
file_name = f"{fn.__name__[:150]}.autotune.json"
path = cache.get_file(file_name)
if path:
with open(path, "r") as cached_configs:
timings = json.load(cached_configs)["configs_timings"]
timings = {Config(**config): timing for config, timing in timings}
self.cache[tuning_key] = builtins.min(timings, key=timings.get)
self.configs_timings = timings
return True
bench_fn()
cache.put(
json.dumps({
"key":
tuning_key,
"configs_timings":
[(config.__dict__, timings) for config, timings in self.configs_timings.items() if not config.pre_hook],
}), file_name, binary=False)
return False
def run(self, *args, **kwargs):
self.nargs = dict(zip(self.arg_names, args))
used_cached_result = True
if len(self.configs) > 1:
all_args = {**self.nargs, **kwargs}
_args = {k: v for (k, v) in all_args.items() if k in self.arg_names}
key = [_args[key] for key in self.keys if key in _args]
for _, arg in _args.items():
if hasattr(arg, "dtype"):
key.append(str(arg.dtype))
key = tuple(key)
if key not in self.cache:
used_cached_result = False
pruned_configs = self.prune_configs(kwargs)
def benchmark():
bench_start = time.time()
timings = {config: self._bench(*args, config=config, **kwargs) for config in pruned_configs}
bench_end = time.time()
self.bench_time = bench_end - bench_start
self.cache[key] = builtins.min(timings, key=timings.get)
full_nargs = {**self.nargs, **kwargs, **self.cache[key].all_kwargs()}
self.pre_hook(full_nargs, reset_only=True)
self.configs_timings = timings
if self.cache_results:
used_cached_result = self.check_disk_cache(key, pruned_configs, benchmark)
else:
benchmark()
config = self.cache[key]
else:
config = self.configs[0]
self.best_config = config
if knobs.autotuning.print and not used_cached_result:
print(f"Triton autotuning for function {self.base_fn.__name__},\nwith key as {key},\n"
f"finished after {self.bench_time:.2f}s,\nbest config selected: {self.best_config};")
if config.pre_hook is not None:
full_nargs = {**self.nargs, **kwargs, **config.all_kwargs()}
config.pre_hook(full_nargs)
ret = self.fn.run(
*args,
**kwargs,
**config.all_kwargs(),
)
self.nargs = None
return ret
def prune_configs(self, kwargs: Dict) -> List[Config]:
pruned_configs = self.configs
if self.early_config_prune:
pruned_configs = self.early_config_prune(self.configs, self.nargs, **kwargs)
if self.perf_model:
top_k = self.configs_top_k
if isinstance(top_k, float) and top_k <= 1.0:
top_k = int(len(self.configs) * top_k)
elif not isinstance(top_k, int):
# Slice index must be an integer
raise TypeError("Error while pruning configs, top_k must be either 1) a float <= 1.0 or 2) an int")
if len(pruned_configs) > top_k:
est_timing = {
config: self.perf_model(
**self.nargs,
**kwargs,
**config.all_kwargs(),
)
for config in pruned_configs
}
pruned_configs = sorted(est_timing.keys(), key=lambda x: est_timing[x])[:top_k]
return pruned_configs
def warmup(self, *args, **kwargs):
self.nargs = dict(zip(self.arg_names, args))
ret = []
for autotune_config in self.prune_configs(kwargs):
ret.append(self.fn.warmup(
*args,
**kwargs,
**autotune_config.all_kwargs(),
))
self.nargs = None
return ret
class Config:
"""
An object that represents a possible kernel configuration for the auto-tuner to try.
:ivar kwargs: a dictionary of meta-parameters to pass to the kernel as keyword arguments.
:type kwargs: dict[Str, Any]
:ivar num_warps: the number of warps to use for the kernel when compiled for GPUs. For example, if
`num_warps=8`, then each kernel instance will be automatically parallelized to
cooperatively execute using `8 * 32 = 256` threads.
:type num_warps: int
:ivar num_stages: the number of stages that the compiler should use when software-pipelining loops.
Mostly useful for matrix multiplication workloads on SM80+ GPUs.
:type num_stages: int
:ivar num_ctas: number of blocks in a block cluster. SM90+ only.
:type num_ctas: int
:type maxnreg: Optional[int]
:ivar maxnreg: maximum number of registers one thread can use. Corresponds
to ptx .maxnreg directive. Not supported on all platforms.
:ivar pre_hook: a function that will be called before the kernel is called. Parameters of this
function are args.
:ivar ir_override: filename of a user-defined IR (*.{ttgir|llir|ptx|amdgcn}).
"""
def __init__(self, kwargs, num_warps=4, num_stages=3, num_ctas=1, maxnreg=None, pre_hook=None, ir_override=None):
self.kwargs = kwargs
self.num_warps = num_warps
self.num_ctas = num_ctas
self.num_stages = num_stages
self.maxnreg = maxnreg
self.pre_hook = pre_hook
self.ir_override = ir_override
def __setstate__(self, state):
self.kwargs = state.get("kwargs", {})
self.num_warps = state.get("num_warps", 4)
self.num_stages = state.get("num_stages", 3)
self.num_ctas = state.get("num_ctas", 1)
self.maxnreg = state.get("maxnreg", None)
self.pre_hook = state.get("pre_hook", None)
self.ir_override = state.get("ir_override", None)
def all_kwargs(self):
return {
**self.kwargs, **{
k: v
for (k, v) in (
("num_warps", self.num_warps),
("num_ctas", self.num_ctas),
("num_stages", self.num_stages),
("maxnreg", self.maxnreg),
("ir_override", self.ir_override),
) if v is not None
}
}
def __str__(self):
res = []
for k, v in self.kwargs.items():
res.append(f"{k}: {v}")
res.append(f"num_warps: {self.num_warps}")
res.append(f"num_ctas: {self.num_ctas}")
res.append(f"num_stages: {self.num_stages}")
res.append(f"maxnreg: {self.maxnreg}")
return ", ".join(res)
def __hash__(self):
return hash((*self.all_kwargs().items(), self.pre_hook))
def __eq__(self, other):
self_tuple = tuple((
*self.all_kwargs().items(),
self.pre_hook,
))
other_tuple = tuple((
*other.all_kwargs().items(),
other.pre_hook,
))
return self_tuple == other_tuple
def autotune(configs, key, prune_configs_by=None, reset_to_zero=None, restore_value=None, pre_hook=None, post_hook=None,
warmup=None, rep=None, use_cuda_graph=False, do_bench=None, cache_results=False):
"""
Decorator for auto-tuning a :code:`triton.jit`'d function.
.. highlight:: python
.. code-block:: python
@triton.autotune(configs=[
triton.Config(kwargs={'BLOCK_SIZE': 128}, num_warps=4),
triton.Config(kwargs={'BLOCK_SIZE': 1024}, num_warps=8),
],
key=['x_size'] # the two above configs will be evaluated anytime
# the value of x_size changes
)
@triton.jit
def kernel(x_ptr, x_size, BLOCK_SIZE: tl.constexpr):
...
:note: When all the configurations are evaluated, the kernel will run multiple times.
This means that whatever value the kernel updates will be updated multiple times.
To avoid this undesired behavior, you can use the `reset_to_zero` argument, which
resets the value of the provided tensor to `zero` before running any configuration.
If the environment variable :code:`TRITON_PRINT_AUTOTUNING` is set to
:code:`"1"`, Triton will print a message to stdout after autotuning each
kernel, including the time spent autotuning and the best configuration.
:param configs: a list of :code:`triton.Config` objects
:type configs: list[triton.Config]
:param key: a list of argument names whose change in value will trigger the evaluation of all provided configs.
:type key: list[str]
:param prune_configs_by: a dict of functions that are used to prune configs, fields:
'perf_model': performance model used to predicate running time with different configs, returns running time
'top_k': number of configs to bench
'early_config_prune'(optional): a function used to do early prune (eg, num_stages). It takes configs:List[Config] as its input, and returns pruned configs.
:param reset_to_zero: a list of argument names whose value will be reset to zero before evaluating any configs.
:type reset_to_zero: list[str]
:param restore_value: a list of argument names whose value will be restored after evaluating any configs.
:type restore_value: list[str]
:param pre_hook: a function that will be called before the kernel is called.
This overrides the default pre_hook used for 'reset_to_zero' and 'restore_value'.
'kwargs': a dict of all arguments passed to the kernel.
'reset_only': a boolean indicating whether the pre_hook is called to reset the values only, without a corresponding post_hook.
:type pre_hook: lambda args, reset_only
:param post_hook: a function that will be called after the kernel is called.
This overrides the default post_hook used for 'restore_value'.
'kwargs': a dict of all arguments passed to the kernel.
'exception': the exception raised by the kernel in case of a compilation or runtime error.
:type post_hook: lambda args, exception
:param warmup: warmup time (in ms) to pass to benchmarking (deprecated).
:type warmup: int
:param rep: repetition time (in ms) to pass to benchmarking (deprecated).
:type rep: int
:param do_bench: a benchmark function to measure the time of each run.
:type do_bench: lambda fn, quantiles
:param cache_results: whether to cache autotune timings to disk. Defaults to False.
"type cache_results: bool
"""
def decorator(fn):
return Autotuner(fn, fn.arg_names, configs, key, reset_to_zero, restore_value, pre_hook=pre_hook,
post_hook=post_hook, prune_configs_by=prune_configs_by, warmup=warmup, rep=rep,
use_cuda_graph=use_cuda_graph, do_bench=do_bench, cache_results=cache_results)
return decorator
class Heuristics(KernelInterface):
def __init__(self, fn, arg_names, values) -> None:
self.fn = fn
self.values = values
self.arg_names = arg_names
def run(self, *args, **kwargs):
for v, heur in self.values.items():
kwargs[v] = heur({**dict(zip(self.arg_names, args)), **kwargs})
return self.fn.run(*args, **kwargs)
def heuristics(values):
"""
Decorator for specifying how the values of certain meta-parameters may be computed.
This is useful for cases where auto-tuning is prohibitively expensive, or just not applicable.
.. highlight:: python
.. code-block:: python
# smallest power-of-two >= x_size
@triton.heuristics(values={'BLOCK_SIZE': lambda args: triton.next_power_of_2(args['x_size'])})
@triton.jit
def kernel(x_ptr, x_size, BLOCK_SIZE: tl.constexpr):
...
:param values: a dictionary of meta-parameter names and functions that compute the value of the meta-parameter.
each such function takes a list of positional arguments as input.
:type values: dict[str, Callable[[dict[str, Any]], Any]]
"""
def decorator(fn):
return Heuristics(fn, fn.arg_names, values)
return decorator