DriverTrac/venv/lib/python3.12/site-packages/jax/_src/state/discharge.py

904 lines
35 KiB
Python

# Copyright 2022 The JAX Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Module for discharging state primitives."""
from __future__ import annotations
from collections.abc import Callable, Sequence
import dataclasses
from functools import partial
import math
import operator
from typing import Any, Protocol, TypeVar
from jax._src import ad_util
from jax._src import api_util
from jax._src import config
from jax._src import core
from jax._src import literals
from jax._src import linear_util as lu
from jax._src import pjit
from jax._src import sharding_impls
from jax._src import source_info_util
from jax._src import tree_util
from jax._src import custom_derivatives
from jax._src.interpreters import ad
from jax._src.interpreters import mlir
from jax._src.interpreters import partial_eval as pe
from jax._src.lax import lax
from jax._src.lax import slicing as lax_slicing
from jax._src.state import indexing
from jax._src.state.primitives import addupdate_p, get_p, swap_p, pin, unpin
from jax._src.state.types import (
AbstractRef, RefBitcaster, RefEffect, RefReshaper, get_ref_aval_from_value,
uninitialized,)
from jax._src.state.utils import bitcast, hoist_consts_to_refs
from jax._src.typing import Array
from jax._src.util import (foreach, safe_map, safe_zip, split_list, unzip2,
weakref_lru_cache)
import numpy as np
## JAX utilities
map, unsafe_map = safe_map, map
zip, unsafe_zip = safe_zip, zip
PyTreeDef = tree_util.PyTreeDef
## Discharging state
def discharge_state(
jaxpr: core.Jaxpr,
consts: Sequence[Any],
*,
should_discharge: bool | Sequence[bool] = True,
) -> tuple[core.Jaxpr, Sequence[Any]]:
"""Converts a stateful jaxpr into a pure one.
Discharging replaces ``Ref`` inputs with regular values, threads updates
through the computation, and returns updated ``Ref``s as additional outputs.
Args:
jaxpr: A stateful jaxpr with ``Ref`` inputs.
consts: Constants for the jaxpr.
should_discharge: Whether to discharge each ``Ref`` input. If a single bool,
applies to all inputs.
Returns:
A tuple of ``(new_jaxpr, new_consts)`` where ``new_jaxpr`` is a jaxpr with
no ``Read``/``Write``/``Accum`` effects. Discharged ``Ref`` inputs become
regular value inputs, and their updated values are appended to the outputs.
"""
if isinstance(should_discharge, bool):
should_discharge = [should_discharge] * len(jaxpr.invars)
in_avals = [v.aval.inner_aval
if isinstance(v.aval, AbstractRef) and d
else v.aval for v, d in zip(jaxpr.invars, should_discharge)]
eval_jaxpr = lu.wrap_init(partial(_eval_jaxpr_discharge_state, jaxpr,
should_discharge, consts),
debug_info=jaxpr.debug_info.with_unknown_names())
new_jaxpr, _ , new_consts = pe.trace_to_jaxpr_dynamic(eval_jaxpr, in_avals)
return new_jaxpr, new_consts
# TODO(mattjj): migrate callers to discharge_state2 for caching
def discharge_state2(jaxpr: core.ClosedJaxpr,
should_discharge: bool | Sequence[bool] = True,
) -> core.ClosedJaxpr:
if isinstance(should_discharge, bool):
should_discharge = (should_discharge,) * len(jaxpr.in_avals)
return _discharge_state2(jaxpr, tuple(should_discharge))
@weakref_lru_cache
def _discharge_state2(jaxpr: core.ClosedJaxpr,
should_discharge: tuple[bool, ...],
) -> core.ClosedJaxpr:
jaxpr_, consts = discharge_state(jaxpr.jaxpr, jaxpr.consts,
should_discharge=should_discharge)
return core.ClosedJaxpr(jaxpr_, consts)
@dataclasses.dataclass
class Environment:
env: dict[core.Var, Any]
def read(self, v: core.Atom) -> Any:
if type(v) is core.Literal:
return v.val
assert isinstance(v, core.Var)
return self.env[v]
def write(self, v: core.Var, val: Any) -> None:
self.env[v] = val
class DischargeRule(Protocol):
def __call__(
self,
in_avals: Sequence[core.AbstractValue],
out_avals: Sequence[core.AbstractValue],
*args: Any,
**params: Any,
) -> tuple[Sequence[Any | None], Any | Sequence[Any]]:
"""Discharge rule for a primitive.
See :func:`discharge_state` for an explanation of what discharge means.
Args:
in_avals: Input abstract values.
out_avals: Output abstract values.
*args: Input values.
**params: Primitive parameters.
Returns:
A tuple of ``(new_invals, new_outvals)`` where:
* ``new_invals`` contains updated values for discharged ``Ref`` inputs,
or ``None`` if the input is not a ``Ref`` or was not updated.
* ``new_outvals`` is the primitive's output. A sequence if the primitive
has multiple results, otherwise a single value.
"""
_discharge_rules: dict[core.Primitive, DischargeRule] = {}
def register_discharge_rule(prim: core.Primitive):
def register(f: DischargeRule):
_discharge_rules[prim] = f
return register
class PartialDischargeRule(Protocol):
"""Discharge rule that supports selective discharging of ``Ref`` inputs.
Generalizes :class:`DischargeRule` by accepting a ``should_discharge``
argument that specifies which ``Ref`` inputs to discharge. The returned
``new_invals`` must contain a non-``None`` value if and only if the
corresponding ``Ref`` was discharged.
"""
def __call__(
self,
should_discharge: Sequence[bool],
in_avals: Sequence[core.AbstractValue],
out_avals: Sequence[core.AbstractValue],
*args: Any,
**params: Any,
) -> tuple[Sequence[Any | None], Any | Sequence[Any]]:
...
_partial_discharge_rules: dict[core.Primitive, PartialDischargeRule] = {}
def register_partial_discharge_rule(prim: core.Primitive):
def register(f: PartialDischargeRule):
_partial_discharge_rules[prim] = f
return register
def _eval_jaxpr_discharge_state(
jaxpr: core.Jaxpr, should_discharge: Sequence[bool], consts: Sequence[Any],
*args: Any):
env = Environment({})
foreach(env.write, jaxpr.constvars, consts)
# Here some args may correspond to `Ref` avals but they'll be treated like
# regular values in this interpreter.
foreach(env.write, jaxpr.invars, args)
refs_to_discharge = {id(v.aval) for v, d in zip(jaxpr.invars, should_discharge)
if d and isinstance(v.aval, AbstractRef)}
for eqn in jaxpr.eqns:
name_stack = source_info_util.current_name_stack() + eqn.source_info.name_stack
traceback = eqn.source_info.traceback
with source_info_util.user_context(
traceback, name_stack=name_stack), eqn.ctx.manager:
should_discharge = [id(v.aval) in refs_to_discharge for v in eqn.invars]
if eqn.primitive is core.ref_p:
[invar], [outvar] = eqn.invars, eqn.outvars
ans = env.read(invar)
if config.refs_to_pins.value:
ans = pin(ans)
refs_to_discharge.add(id(outvar.aval))
elif eqn.primitive is core.freeze_p:
[invar], [outvar] = eqn.invars, eqn.outvars
ans = env.read(invar)
if config.refs_to_pins.value:
ans = unpin(ans)
refs_to_discharge.remove(id(invar.aval))
elif any(should_discharge) or core.internal_mutable_array_effect in eqn.effects:
if eqn.primitive in _partial_discharge_rules:
rule: DischargeRule = partial(_partial_discharge_rules[eqn.primitive], should_discharge)
elif eqn.primitive in _discharge_rules:
rule = _discharge_rules[eqn.primitive]
else:
raise NotImplementedError(
f"No state discharge rule implemented for primitive: {eqn.primitive}")
invals = map(env.read, eqn.invars)
in_avals = [v.aval for v in eqn.invars]
out_avals = [v.aval for v in eqn.outvars]
new_invals, ans = rule(
in_avals, out_avals, *invals, **eqn.params)
for invar, should, new_inval in zip(eqn.invars, should_discharge, new_invals):
if new_inval is not None:
if not should:
raise ValueError(
f"Did not ask for inval to be discharged but it was. ({invar=},"
f" {new_inval=})"
)
env.write(invar, new_inval) # type: ignore[arg-type]
else:
# Default primitive rule, similar to `core.eval_jaxpr`. Note that here
# we assume any higher-order primitives inside of the jaxpr are *not*
# stateful.
subfuns, bind_params = eqn.primitive.get_bind_params(eqn.params)
ans = eqn.primitive.bind(*subfuns, *map(env.read, eqn.invars),
**bind_params)
if eqn.primitive.multiple_results:
foreach(env.write, eqn.outvars, ans)
else:
env.write(eqn.outvars[0], ans)
# By convention, we return the outputs of the jaxpr first and then the final
# values of the `Ref`s. Callers to this function should be able to split
# them up by looking at `len(jaxpr.outvars)`.
out_vals = map(env.read, jaxpr.outvars)
ref_vals = map(
env.read, [v for v in jaxpr.invars if id(v.aval) in refs_to_discharge])
return out_vals + ref_vals
def _is_trivial_indexer(indexer: indexing.NDIndexer):
"""Returns whether the indexer selects the entire shape."""
for s, idx in zip(indexer.shape, indexer.indices):
if not isinstance(idx, indexing.Slice):
return False
if idx.is_dynamic_start or idx.is_dynamic_size:
return False
if idx.start != 0 or idx.size != s:
return False
return True
def _maybe_convert_to_slice(
indexer: indexing.NDIndexer
) -> list[tuple[int, int, int]] | None:
args = []
for i in indexer.indices:
if not isinstance(i, indexing.Slice):
return None
start = i.start
end = i.start + (i.size - 1) * i.stride + 1
stride = i.stride
# cannot convert to static `slice` if `start` or `end` is dynamic
if not isinstance(start, int) or not isinstance(end, int):
return None
args.append((start, end, stride))
return args
def _maybe_convert_to_dynamic_slice(
indexer: indexing.NDIndexer,
) -> (
tuple[tuple[Array | int, ...], tuple[Array | int, ...], tuple[int, ...]]
| None
):
# An NDIndexer only corresponds to a `dynamic_slice` or `dynamic_update_slice`
# if each of the indexers is a `Slice` or a ()-shaped value.
if not all(isinstance(i, indexing.Slice) or not np.shape(i)
for i in indexer.indices):
return None
# `lax.dynamic_slice` does not handle striding
for i in indexer.indices:
if isinstance(i, indexing.Slice) and i.stride > 1:
return None
_convert_i32 = lambda x: lax.convert_element_type(x, np.dtype("int32"))
starts = tuple(
_convert_i32(i.start) if isinstance(i, indexing.Slice)
else _convert_i32(i) for i in indexer.indices
)
sizes = tuple(
i.size if isinstance(i, indexing.Slice) else 1 for i in indexer.indices
)
squeeze_dims = tuple(
i
for i, idx in enumerate(indexer.indices)
if not isinstance(idx, indexing.Slice)
)
return starts, sizes, squeeze_dims
# In this code, indexing is handled in three ways: `slice`, `dynamic_slice`, and
# gather. For the gather case, the goal is to create a gather array, which means
# that we need to convert all other types of indexers into integer array
# indexers. This is done by looping over all indexers and checking if they are
# not integer array indexers, and if not, performing the conversion. However,
# during this process, the indexing semantics may change. Specifically,
# according to the indexing rules of NumPy, when there are integer array
# indexers separated by other indexers, the axes corresponding to the integer
# array indexers need to be moved to the front. After we convert all other
# indexers to integer array indexers, the distinction between integer array
# indexers and other types of indexers is lost. As a result, it becomes
# impossible to determine which axes should be moved to the front. In this case,
# we need to transpose the target array before the gather operation. We also
# need to transpose the target array back after the gather operation, if it is
# used in subsequent computations.
def _maybe_transpose_before_gather(
indexer: indexing.NDIndexer
) -> tuple[int, ...] | None:
is_int_indexing, _, _ = indexing.unpack_ndindexer(indexer)
int_indexers_contiguous = bool(
np.all(np.diff(np.where(is_int_indexing)[0]) == 1)
)
if int_indexers_contiguous:
return None # no transpose needed
int_indexer_idxs: list[int] = []
non_int_indexer_idxs: list[int] = []
for i, is_int_index in enumerate(is_int_indexing):
(int_indexer_idxs if is_int_index else non_int_indexer_idxs).append(i)
transpose_order = (*int_indexer_idxs, *non_int_indexer_idxs)
return transpose_order
def _perform_transpose_before_gather(
target_arr: Array,
indexer: indexing.NDIndexer,
transpose_order: tuple[int, ...],
) -> tuple[Array, indexing.NDIndexer]:
new_target_arr = target_arr.transpose(transpose_order)
reordered_indices = tuple(indexer.indices[i] for i in transpose_order)
new_indexer = indexing.NDIndexer(
indices=reordered_indices,
shape=indexer.shape,
int_indexer_shape=indexer.int_indexer_shape,
)
return new_target_arr, new_indexer
def _convert_to_gather_arrays(indexer: indexing.NDIndexer) -> tuple[Array, ...]:
# This is the general gather case. We need to create the gather arrays.
total_shape = indexer.get_indexer_shape()
is_int_indexing, _, _ = indexing.unpack_ndindexer(indexer)
if any(is_int_indexing):
n_idxers = len(indexer.indices)
int_indexer_shape = indexer.int_indexer_shape
n_int_indexers = sum(1 for p in is_int_indexing if p)
last_int_index_idx = n_idxers - 1 - is_int_indexing[::-1].index(True)
n_slice_index_dims_after_int = n_idxers - last_int_index_idx - 1
def get_idx_in_shape_after_indexing(i):
if not any(is_int_indexing):
return i
if i < n_idxers - n_slice_index_dims_after_int - n_int_indexers:
return i
if i < n_idxers - n_slice_index_dims_after_int:
raise ValueError
return i - n_int_indexers + len(int_indexer_shape)
arrs = []
for i, idxer in enumerate(indexer.indices):
if isinstance(idxer, indexing.Slice):
idx_in_shape_after_indexing = get_idx_in_shape_after_indexing(i)
arr = (
lax.iota(np.int32, total_shape[idx_in_shape_after_indexing])
* idxer.stride
+ idxer.start
)
diff = len(total_shape) - idx_in_shape_after_indexing - 1
arr = arr.reshape(arr.shape + (1,) * diff)
arrs.append(arr)
elif isinstance(idxer, (np.ndarray, Array, literals.TypedNdArray)):
diff = n_idxers - 1 - last_int_index_idx
arr = idxer.reshape(idxer.shape + (1,) * diff)
arrs.append(arr)
else:
raise ValueError(f"Invalid type of idxer: {type(idxer).__name__}")
return tuple(arrs)
@register_discharge_rule(get_p)
def _get_discharge_rule(
in_avals: Sequence[core.AbstractValue],
out_avals: Sequence[core.AbstractValue], x, *idx,
tree):
del in_avals, out_avals
y = _get_discharge(x, idx, tree)
return (None,) * (len(idx) + 1), y
def _index_array(x, indexer: indexing.NDIndexer):
if _is_trivial_indexer(indexer):
return x
# Try the three APIs in the following order: `lax.slice`,
# `lax.dynamic_slice` and gather
if maybe_slice := _maybe_convert_to_slice(indexer):
x = lax_slicing.slice(x, *zip(*maybe_slice))
# If everything in the indexer is a slice or ()-shaped, we can also
# use `lax.dynamic_slice` with 1-sized slices for ()-shaped indices.
# We need to squeeze out the 1-sized slices at the end.
elif maybe_dynamic_slice := _maybe_convert_to_dynamic_slice(indexer):
starts, sizes, squeeze_dims = maybe_dynamic_slice
y = lax_slicing.dynamic_slice(x, starts, sizes)
x = lax.squeeze(y, squeeze_dims)
else:
transpose_order = _maybe_transpose_before_gather(indexer)
if transpose_order is not None:
x, indexer = _perform_transpose_before_gather(x, indexer, transpose_order)
arrays = _convert_to_gather_arrays(indexer)
x = x[arrays]
return x
def transform_array(x, transforms):
if transforms is None:
transforms = []
result = x
for transform in transforms:
if transform is None:
continue
match transform:
case indexing.NDIndexer():
result = _index_array(result, transform)
case RefBitcaster():
result = bitcast(result, transform.dtype)
case RefReshaper():
result = result.reshape(transform.shape)
case _:
raise NotImplementedError(f"Unsupported transform: {transform}")
return result
def transform_swap_array(x, transforms, val):
if transforms is None:
transforms = []
# Will hold the value read from `x` before the swap, and will have the same
# shape as `val`.
new_val = x
# List of intermediate results by transforming `x`.
intermediates = [x]
# Read phase (forward loop)
for transform in transforms:
match transform:
case indexing.NDIndexer():
indexer = transform
if _is_trivial_indexer(indexer):
intermediates.append(intermediates[-1])
continue
# If everything in the indexer is a slice or ()-shaped, we can also
# use `lax.dynamic_slice` with 1-sized slices for ()-shaped indices.
# We need to squeeze out the 1-sized slices at the end.
if maybe_slice := _maybe_convert_to_dynamic_slice(indexer):
starts, sizes, squeeze_dims = maybe_slice
new_val = lax.squeeze(
lax_slicing.dynamic_slice(new_val, starts, sizes), squeeze_dims
)
else:
transpose_order = _maybe_transpose_before_gather(indexer)
if transpose_order is not None:
new_val, indexer = _perform_transpose_before_gather(
new_val, indexer, transpose_order
)
arrays = _convert_to_gather_arrays(indexer)
new_val = new_val[arrays]
# Here, we don't need to transpose `new_val` back because it now holds
# the result of the indexing, and is no longer the original array that
# was indexed into.
intermediates.append(new_val)
case RefBitcaster():
intermediates.append(bitcast(new_val, transform.dtype))
case RefReshaper():
intermediates.append(new_val.reshape(transform.shape))
case _:
raise NotImplementedError(f"Unsupported transform: {transform}")
# Will hold the final state of the `x` after `val` has been written to the
# transformed location, and will have the same shape as `x`.
new_x = val
# Write phase (reversed loop)
for intermediate, transform in reversed(zip(intermediates[:-1], transforms)):
if isinstance(transform, indexing.NDIndexer):
indexer = transform
if _is_trivial_indexer(indexer):
continue
if maybe_slice := _maybe_convert_to_dynamic_slice(indexer):
starts, _, squeeze_dims = maybe_slice
new_x = lax_slicing.dynamic_update_slice(
intermediate, lax.expand_dims(new_x, squeeze_dims), starts
)
else:
transpose_order = _maybe_transpose_before_gather(indexer)
if transpose_order is not None:
intermediate, indexer = _perform_transpose_before_gather(
intermediate, indexer, transpose_order
)
arrays = _convert_to_gather_arrays(indexer)
new_x = intermediate.at[arrays].set(new_x) # pytype: disable=attribute-error
if transpose_order is not None:
transpose_order_inversed = np.argsort(transpose_order)
new_x = new_x.transpose(transpose_order_inversed)
else:
raise NotImplementedError(f"Unsupported transform: {transform}")
return new_val, new_x
def _get_discharge(x, idx, tree):
transforms = tree_util.tree_unflatten(tree, idx)
return transform_array(x, transforms)
@register_discharge_rule(swap_p)
def _swap_discharge_rule(
in_avals: Sequence[core.AbstractValue],
out_avals: Sequence[core.AbstractValue], x, val, *idx,
tree):
del in_avals, out_avals
z, x_new = _swap_discharge(x, val, idx, tree)
return (x_new, None) + (None,) * len(idx), z
def _swap_discharge(x, val, idx, tree):
transforms = tree_util.tree_unflatten(tree, idx)
return transform_swap_array(x, transforms, val)
@register_discharge_rule(addupdate_p)
def _addupdate_discharge_rule(
in_avals: Sequence[core.AbstractValue],
out_avals: Sequence[core.AbstractValue], x, val, *idx,
tree):
del in_avals, out_avals
ans = _addupdate_discharge(x, val, idx, tree)
return (ans, None) + (None,) * len(idx), []
def _addupdate_discharge(x, val, idx, tree):
transforms = tree_util.tree_unflatten(tree, idx)
if not transforms:
return x + val
if len(transforms) > 1:
raise NotImplementedError("Only single indexer is supported.")
indexer = transforms[0]
if _is_trivial_indexer(indexer):
return x + val
# If everything in the indexer is a slice or ()-shaped, we can also
# use `lax.dynamic_slice` with 1-sized slices for ()-shaped indices.
# We need to squeeze out the 1-sized slices at the end.
if maybe_slice := _maybe_convert_to_dynamic_slice(indexer):
starts, sizes, squeeze_dims = maybe_slice
x_old = lax_slicing.dynamic_slice(x, starts, sizes)
val = lax.expand_dims(val, squeeze_dims)
y = lax_slicing.dynamic_update_slice(x, x_old + val, starts)
return y
transpose_order = _maybe_transpose_before_gather(indexer)
if transpose_order is not None:
x, indexer = _perform_transpose_before_gather(x, indexer, transpose_order)
arrays = _convert_to_gather_arrays(indexer)
x = x.at[arrays].add(val)
if transpose_order is not None:
transpose_order_inversed = np.argsort(transpose_order)
x = x.transpose(transpose_order_inversed)
return x
@weakref_lru_cache
def _cached_closed_jaxpr_discharge(closed_jaxpr: core.ClosedJaxpr):
jaxpr, consts = closed_jaxpr.jaxpr, closed_jaxpr.consts
num_outs = len(jaxpr.outvars)
discharged_jaxpr, discharged_consts = discharge_state(jaxpr, consts)
discharged_closed_jaxpr = core.ClosedJaxpr(discharged_jaxpr, discharged_consts)
fun = lu.wrap_init(core.jaxpr_as_fun(discharged_closed_jaxpr),
debug_info=discharged_jaxpr.debug_info)
return discharged_closed_jaxpr, num_outs, fun
@register_discharge_rule(core.closed_call_p)
def _closed_call_discharge_rule(
in_avals: Sequence[core.AbstractValue], _,*args,
call_jaxpr: core.ClosedJaxpr):
discharged_closed_jaxpr, num_outs, fun = _cached_closed_jaxpr_discharge(call_jaxpr)
out_and_ref_vals = core.closed_call_p.bind(fun, *args,
call_jaxpr=discharged_closed_jaxpr)
out_vals, ref_vals = split_list(out_and_ref_vals, [num_outs])
ref_vals_iter = iter(ref_vals)
new_invals = tuple(next(ref_vals_iter) if isinstance(aval, AbstractRef)
else None for aval in in_avals)
sentinel = object()
assert next(ref_vals_iter, sentinel) is sentinel
return new_invals, out_vals
# # `run_state`
run_state_p = core.Primitive("run_state")
run_state_p.multiple_results = True
def _run_state_is_high(*_, jaxpr, **__):
return jaxpr.is_high
run_state_p.is_high = _run_state_is_high # type: ignore
def _run_state_to_lojax(*args, jaxpr, is_initialized, **params):
assert not jaxpr.constvars
closed_jaxpr = core.ClosedJaxpr(jaxpr, ())
arg_avals = map(core.typeof, args)
args, is_initialized = unzip2(
(lo_val, is_init) for a, x, is_init in zip(arg_avals, args, is_initialized)
for lo_val in (a.read_loval(x) if a.has_qdd else a.lower_val(x)))
lo_jaxpr = pe.lower_jaxpr(closed_jaxpr)
all_outs = run_state_p.bind(*lo_jaxpr.consts, *args, jaxpr=lo_jaxpr.jaxpr,
is_initialized=is_initialized, **params)
out_mut, lo_outs = split_list(all_outs, [pe.num_himuts_out(jaxpr)])
pe.apply_himut(jaxpr, args, out_mut)
return pe.raise_lo_outs(arg_avals, lo_outs)
run_state_p.to_lojax = _run_state_to_lojax
def _default_initialization(x):
assert hasattr(x, 'shape')
assert hasattr(x, 'dtype')
dtype = np.dtype(x)
if np.issubdtype(dtype, np.integer):
value = np.iinfo(dtype).min
else:
value = math.nan
return lax.full(x.shape, value, dtype)
def _run_state_impl(*args: Any, jaxpr: core.Jaxpr,
which_linear: tuple[bool, ...],
is_initialized: tuple[bool, ...]):
del which_linear
discharged_jaxpr, consts = discharge_state(jaxpr, ())
# Initialize the args that are not initialized.
args_it = iter(args)
args = tuple(
next(args_it) if is_init else _default_initialization(var.aval)
for is_init, var in zip(is_initialized, discharged_jaxpr.invars)
)
return core.eval_jaxpr(discharged_jaxpr, consts, *args)
run_state_p.def_impl(_run_state_impl)
mlir.register_lowering(run_state_p, mlir.lower_fun(_run_state_impl))
def _run_state_abstract_eval(*avals: core.AbstractValue, jaxpr: core.Jaxpr,
which_linear: tuple[bool, ...],
is_initialized: tuple[bool, ...]):
del which_linear
assert sum(is_initialized) == len(avals)
# When we abstractly evaluate `run_state`, we want to keep track of which
# input avals are `Ref`s and which are not. If an aval is a `Ref`, we want to
# "propagate" out its inner effects. Otherwise, the effects are local to this
# `run_state`.
inner_to_outer_aval_mapping = {}
outer_ref_index = 0
for i, is_init in enumerate(is_initialized):
if not is_init:
pass
inner_to_outer_aval_mapping[i] = outer_ref_index
outer_ref_index += 1
nonlocal_effects = set()
is_ref = {i for i, aval in enumerate(avals) if isinstance(aval, AbstractRef)}
for eff in jaxpr.effects:
if not isinstance(eff, RefEffect):
nonlocal_effects.add(eff)
continue
if eff.input_index not in inner_to_outer_aval_mapping:
# This means that this effect corresponds to an uninitialized Ref and
# should not propagate out of the primitive.
continue
# If we do propagate the effect, we need to update the input index to
# correspond to the outer index.
outer_index = inner_to_outer_aval_mapping[eff.input_index]
if outer_index in is_ref:
# This means that the effect corresponds to a Ref from an outside scope.
nonlocal_effects.add(
eff.replace(input_index=inner_to_outer_aval_mapping[eff.input_index])
)
assert len(jaxpr.invars) == len(is_initialized)
if not all(is_initialized):
raise NotImplementedError # Uninitialized refs are not in avals.
return avals, nonlocal_effects
run_state_p.def_effectful_abstract_eval(_run_state_abstract_eval)
def _run_state_jvp(primals: Sequence[Any], tangents: Sequence[Any], *,
jaxpr: core.Jaxpr, which_linear: tuple[bool, ...],
is_initialized: tuple[bool, ...]):
if not all(is_initialized):
raise NotImplementedError("Uninitialized Refs are not supported in jvp.")
nonzero_tangents = [not isinstance(t, ad_util.Zero) for t in tangents]
discharged_jaxpr, body_consts = discharge_state(jaxpr, ())
for _ in range(len(nonzero_tangents)):
_, out_nonzero_tangents = ad.jvp_jaxpr(
core.ClosedJaxpr(discharged_jaxpr, body_consts),
nonzero_tangents, instantiate=nonzero_tangents)
if out_nonzero_tangents == nonzero_tangents:
break
nonzero_tangents = map(operator.or_, nonzero_tangents, out_nonzero_tangents)
else:
raise Exception("Invalid fixpoint")
del discharged_jaxpr, body_consts, out_nonzero_tangents
tangents = [ad.instantiate_zeros(t) if inst else t
for t, inst in zip(tangents, nonzero_tangents)]
tangents = [t for t in tangents if type(t) is not ad_util.Zero]
closed_jvp_jaxpr, _ = ad.jvp_jaxpr(pe.close_jaxpr(jaxpr),
nonzero_tangents, [])
jvp_jaxpr_, jvp_consts = closed_jvp_jaxpr.jaxpr, closed_jvp_jaxpr.consts
jvp_jaxpr = hoist_consts_to_refs(jvp_jaxpr_)
jvp_which_linear = (*(False,) * len(jvp_consts), *which_linear, *(True,) * len(tangents))
out = run_state_p.bind(*jvp_consts, *primals, *tangents, jaxpr=jvp_jaxpr,
which_linear=jvp_which_linear,
# TODO(sharadmv): compute this in the general case
is_initialized=(True,) * len(jvp_jaxpr.invars))
out_consts, out_primals, out_tangents = split_list(out, [len(jvp_consts),
len(primals)])
del out_consts
out_tangents_iter = iter(out_tangents)
out_tangents = [next(out_tangents_iter) if nz else ad_util.Zero.from_primal_value(p)
for p, nz in zip(out_primals, nonzero_tangents)]
return out_primals, out_tangents
ad.primitive_jvps[run_state_p] = _run_state_jvp
@register_discharge_rule(run_state_p)
def _run_state_discharge_rule(in_avals: Sequence[core.AbstractValue],
out_avals: Sequence[core.AbstractValue],
*args: Any, jaxpr: core.Jaxpr,
which_linear: Sequence[bool],
is_initialized: tuple[bool, ...]):
if not all(is_initialized):
raise NotImplementedError(
"Uninitialized Refs are not supported in discharge."
)
del out_avals
out_vals = run_state_p.bind(*args, jaxpr=jaxpr, which_linear=which_linear,
is_initialized=is_initialized)
new_invals = []
for aval, out_val in zip(in_avals, out_vals):
new_invals.append(out_val if isinstance(aval, AbstractRef) else None)
return new_invals, out_vals
def initial_style_jaxpr(
fun: Callable, in_tree: PyTreeDef, in_avals: Sequence[core.AbstractValue],
dbg: core.DebugInfo,
) -> tuple[core.Jaxpr, list[Any], PyTreeDef]:
return _initial_style_jaxpr(fun, in_tree, tuple(in_avals), dbg)
@weakref_lru_cache
def _initial_style_jaxpr(fun: Callable,
in_tree: api_util.PyTreeDef,
in_avals: Sequence[core.AbstractValue],
debug: core.DebugInfo):
fun_, out_tree_thunk = api_util.flatten_fun_nokwargs(
lu.wrap_init(fun, debug_info=debug),
tree_util.treedef_tuple((in_tree,)))
jaxpr, _, consts = pe.trace_to_jaxpr_dynamic(fun_, in_avals)
return jaxpr, consts, out_tree_thunk()
T = TypeVar('T')
def run_state(f: Callable[..., None]) -> Callable[[T], T]:
def wrapped(args):
dbg = api_util.debug_info("run_state", f, (args,), {})
flat_args, in_tree = tree_util.tree_flatten(args)
ref_avals, ref_args = unzip2(map(get_ref_aval_from_value, flat_args))
# There may be some uninitialized values here in ref_args.
jaxpr_, consts, _ = initial_style_jaxpr(f, in_tree, ref_avals, dbg)
jaxpr = hoist_consts_to_refs(jaxpr_)
which_linear = (False,) * (len(consts) + len(ref_args))
refs_is_initialized = tuple(r is not uninitialized for r in ref_args)
init_args = tuple(r for r in ref_args if r is not uninitialized)
# Consts are always initialized.
is_initialized = (True,) * len(consts) + refs_is_initialized
out_const_flat = run_state_p.bind(*consts, *init_args, jaxpr=jaxpr,
which_linear=which_linear,
is_initialized=is_initialized)
_, out_flat = split_list(out_const_flat, [len(consts)])
return in_tree.unflatten(out_flat)
return wrapped
def run_state_reference(f: Callable[..., None]):
def wrapped(args):
dbg = api_util.debug_info("run_state", f, (args,), {})
flat_args, in_tree = tree_util.tree_flatten(args)
ref_avals, ref_args = unzip2(map(get_ref_aval_from_value, flat_args))
jaxpr_, consts, _ = initial_style_jaxpr(f, in_tree, ref_avals, dbg)
jaxpr = hoist_consts_to_refs(jaxpr_)
discharged_jaxpr, discharged_consts = discharge_state(jaxpr, ())
# Initialize any uninitialized values here in ref_args in the reference.
ref_args = [
_default_initialization(aval) if r is uninitialized else r
for r, aval in zip(ref_args, ref_avals)
]
out_const_flat = core.eval_jaxpr(discharged_jaxpr, discharged_consts,
*consts, *ref_args)
_, out_flat = split_list(out_const_flat, [len(consts)])
return in_tree.unflatten(out_flat)
return wrapped
@register_discharge_rule(pjit.jit_p)
def _pjit_state_discharge_rule(
in_avals, out_avals, *args, jaxpr, in_shardings, out_shardings,
in_layouts, out_layouts, **params):
if not (any(isinstance(e, RefEffect) for e in jaxpr.effects)
or any(isinstance(a, AbstractRef) for a in jaxpr.in_avals)):
# Only internal ref effects
jaxpr_ = discharge_state2(jaxpr)
out = pjit.jit_p.bind(
*args,
jaxpr=jaxpr_,
in_shardings=in_shardings,
out_shardings=out_shardings,
in_layouts=in_layouts,
out_layouts=out_layouts,
**params,
)
new_invals = [None] * len(in_avals)
return new_invals, out
if not all(isinstance(s, sharding_impls.UnspecifiedValue) for s in (*in_shardings, *out_shardings)):
raise NotImplementedError
if not (all(l is None for l in in_layouts) and
all(l is None for l in out_layouts)):
raise NotImplementedError
discharged_jaxpr = discharge_state2(jaxpr)
new_in_shardings = (sharding_impls.UNSPECIFIED,) * len(discharged_jaxpr.in_avals)
new_out_shardings = (sharding_impls.UNSPECIFIED,) * len(discharged_jaxpr.out_avals)
new_in_layouts = (None,) * len(discharged_jaxpr.in_avals)
new_out_layouts = (None,) * len(discharged_jaxpr.out_avals)
out_and_ref_vals = pjit.jit_p.bind(
*args, jaxpr=discharged_jaxpr, in_shardings=new_in_shardings,
out_shardings=new_out_shardings, in_layouts=new_in_layouts,
out_layouts=new_out_layouts, **params)
out_vals, ref_vals = split_list(out_and_ref_vals, [len(jaxpr.out_avals)])
ref_vals_iter = iter(ref_vals)
new_invals = tuple(next(ref_vals_iter) if isinstance(aval, AbstractRef)
else None for aval in in_avals)
sentinel = object()
assert next(ref_vals_iter, sentinel) is sentinel
return new_invals, out_vals
@register_discharge_rule(custom_derivatives.custom_vjp_call_p)
def custom_vjp_call_discharge(in_avals, out_avals, *args, call_jaxpr,
fwd_jaxpr_thunk, bwd, out_trees, symbolic_zeros,
num_consts):
# Discharge happens after all AD is done, so we can discard the AD rules.
del fwd_jaxpr_thunk, bwd, out_trees, symbolic_zeros, num_consts
dis_jaxpr, dis_consts = discharge_state(call_jaxpr.jaxpr, call_jaxpr.consts)
outs = _eval_jaxpr_ad_error(dis_jaxpr, dis_consts, args)
out_vals, ref_vals = split_list(outs, [len(call_jaxpr.out_avals)])
ref_vals_ = iter(ref_vals)
new_invals = [next(ref_vals_) if isinstance(aval, AbstractRef) else None
for aval in in_avals]
assert next(ref_vals_, None) is None
return new_invals, out_vals
@partial(custom_derivatives.custom_jvp, nondiff_argnums=(0,))
def _eval_jaxpr_ad_error(dis_jaxpr, consts, args):
return core.eval_jaxpr(dis_jaxpr, consts, *args)
@_eval_jaxpr_ad_error.defjvp
def _eval_jaxpr_ad_error_jvp(*_):
raise Exception("should be unreachable, AD after discharge")