DriverTrac/venv/lib/python3.12/site-packages/jax/experimental/mosaic/gpu/mma.py

221 lines
7.4 KiB
Python

# Copyright 2025 The JAX Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
import itertools
from jax.experimental.mosaic.gpu import fragmented_array as fa
from jaxlib.mlir import ir
from jaxlib.mlir.dialects import llvm
from jaxlib.mlir.dialects import vector
import numpy as np
from . import utils
class MMALayouts:
"""Container for MMA layouts, providing a convenient way to create
layouts for MMA operands based on warp configuration.
"""
lhs = fa.TiledLayout(
fa.Tiling(((64, 16), (16, 8), (8, 8), (2,))),
warp_dims=(-7,),
lane_dims=(-3, -2),
vector_dim=-1,
)
rhs = fa.TiledLayout(
fa.Tiling(((8, 16), (8, 8), (2,))),
warp_dims=(fa.Replicated(4),),
lane_dims=(-3, -2),
vector_dim=-1,
)
acc = fa.TiledLayout(
fa.Tiling(((64, 8), (16, 8), (8, 8), (2,))),
warp_dims=(-7,),
lane_dims=(-3, -2),
vector_dim=-1,
)
def _mma_single_tile(
acc: fa.FragmentedArray, a: fa.FragmentedArray, b: fa.FragmentedArray
) -> fa.FragmentedArray:
"""Performs `acc + a @ b.T` using warp level MMA instructions."""
# Muliply by 4 because the fragmtned array has a tile per warp.
assert a.shape == (64, 16)
assert b.shape == (8, 16)
assert acc.shape == (64, 8)
assert a.mlir_dtype == b.mlir_dtype
assert a.mlir_dtype in (ir.F16Type.get(), ir.BF16Type.get())
assert acc.mlir_dtype == ir.F32Type.get()
assert (
isinstance(acc.layout, fa.TiledLayout)
and isinstance(a.layout, fa.TiledLayout)
and isinstance(b.layout, fa.TiledLayout)
)
num_acc_regs, num_a_regs, num_b_regs = 4, 4, 2
acc_regs = [ # pylint: disable=g-complex-comprehension
vector.extract(
reg,
dynamic_position=[],
static_position=ir.DenseI64ArrayAttr.get([pos]),
)
for reg in acc.registers.flatten()
for pos in range(acc.layout.vector_length)
]
i32 = ir.IntegerType.get_signless(32)
a_regs = [utils.bitcast(r, i32) for r in a.registers.flatten()]
b_regs = [utils.bitcast(r, i32) for r in b.registers.flatten()]
# Make sure we have the right number of registers for the instruction.
assert len(a_regs) == 4
assert len(acc_regs) == 4
assert len(b_regs) == 2
instr = f"mma.sync.aligned.m16n8k16.row.col.f32.{a.mlir_dtype}.{b.mlir_dtype}.f32"
counter = itertools.count()
n_regs_str = lambda n: (
"{" + ",".join([f"${next(counter)}" for _ in range(n)]) + "}"
)
out_regs_str = n_regs_str(num_acc_regs)
a_regs_str = n_regs_str(num_a_regs)
b_regs_str = n_regs_str(num_b_regs)
c_regs_str = n_regs_str(num_acc_regs)
ptx = f"{instr} {out_regs_str}, {a_regs_str}, {b_regs_str}, {c_regs_str};"
# See: https://llvm.org/docs/LangRef.html#inline-assembler-expressions
constraints = (
f"{','.join(['=f']*num_acc_regs)}," # Output accumulator regs
f"{','.join(['r']*num_a_regs)}," # Input A regs
f"{','.join(['r']*num_b_regs)},"
f"{','.join(['f']*num_acc_regs)}" # Input accumulator regs
)
in_operands = [*a_regs, *b_regs, *acc_regs]
acc_struct_type = ir.Type.parse(
f"!llvm.struct<({','.join(str(acc.mlir_dtype) for _ in acc_regs)})>"
)
out_regs_struct = llvm.inline_asm(
acc_struct_type,
in_operands,
ptx,
constraints,
has_side_effects=False,
)
out_regs = [
llvm.extractvalue(acc.mlir_dtype, out_regs_struct, [i])
for i in range(len(acc_regs))
]
vec_regs = []
vec_undef = llvm.mlir_undef(ir.VectorType.get((2,), acc.mlir_dtype))
for first, second in zip(out_regs[::2], out_regs[1::2]):
vec = llvm.insertelement(vec_undef, first, position=utils.c(0, i32))
vec = llvm.insertelement(vec, second, position=utils.c(1, i32))
vec_regs.append(vec)
out_regs = np.asarray(vec_regs, dtype=object).reshape(acc.registers.shape)
return fa.FragmentedArray(
_registers=out_regs, _layout=acc.layout, _is_signed=None
)
# TODO(cperivol): More datatypes other than (b)f16.
def mma(
acc: fa.FragmentedArray,
a: fa.FragmentedArray,
b: fa.FragmentedArray,
) -> fa.FragmentedArray:
"""Computes `acc + a @ b.T` using synchronouse MMA instructions.
All operands must have `TiledLayout`s. The layouts must be generated
by the `MMALayouts` class, which ensures that the tiles are mapped
to the warps correctly.
Args:
acc: A `FragmentedArray` with a `TiledLayout` generated from
`MMALayouts.acc`.
a: A `FragmentedArray` with a `TiledLayout` generated from
`MMALayouts.lhs`.
b: A `FragmentedArray` with a `TiledLayout` generated from `MMALayouts.rhs`.
Returns:
A new `FragmentedArray` with the result of the computation with
the same type as `acc`.
"""
(m, k) = a.shape
(n, k2) = b.shape
(m2, n2) = acc.shape
if m != m2:
raise ValueError(f"M mismatch: {m} != {m2}")
if n != n2:
raise ValueError(f"N mismatch: {n} != {n2}")
if k != k2:
raise ValueError(f"K mismatch: {k} != {k2}")
# todo(cperivol): A tile shape can have dimensions that are higher
# multiples of the mma op size as long as those dimensions are not
# sharded across warps.
bf16 = ir.BF16Type.get()
f16 = ir.F16Type.get()
if a.mlir_dtype != b.mlir_dtype:
raise ValueError(f"Dtype mismatch: {a.mlir_dtype} != {b.mlir_dtype}")
if a.mlir_dtype not in (bf16, f16):
raise NotImplementedError("Only bf16 and f16 supported for the operands.")
if acc.mlir_dtype != ir.F32Type.get():
raise NotImplementedError("Only f32 accumulator supported.")
if MMALayouts.lhs != a.layout:
raise ValueError("Expected MMALayouts.lhs layout for A")
if MMALayouts.rhs != b.layout:
raise ValueError("Expected MMALayouts.rhs layout for B")
if MMALayouts.acc != acc.layout:
raise ValueError("Expected MMALayouts.acc layout for acc")
assert isinstance(a.layout, fa.TiledLayout)
assert isinstance(b.layout, fa.TiledLayout)
assert isinstance(acc.layout, fa.TiledLayout)
m_tile, k_tile = a.layout.base_tile_shape
n_tile, k_tile2 = b.layout.base_tile_shape
m_tile2, n_tile2 = acc.layout.base_tile_shape
assert k_tile == k_tile2
assert m_tile2 == m_tile
assert n_tile2 == n_tile
num_m_tiles, num_n_tiles, num_k_tiles = m // m_tile, n // n_tile, k // k_tile
if m != m2:
raise ValueError(f"M mismatch: {m} != {m2}")
if n != n2:
raise ValueError(f"N mismatch: {n} != {n2}")
if k != k2:
raise ValueError(f"K mismatch: {k} != {k2}")
assert m_tile == 64 and n_tile == 8 and k_tile == 16, (
f"Tile shape {m_tile}, {n_tile}, {k_tile} not supported."
)
# Do not modify the accumualtor itself.
acc = acc.copy()
s = lambda idx, length: slice(idx * length, (idx + 1) * length)
for k_idx in range(num_k_tiles):
for m_idx in range(num_m_tiles):
for n_idx in range(num_n_tiles):
ms = s(m_idx, m_tile)
ns = s(n_idx, n_tile)
ks = s(k_idx, k_tile)
acc[ms, ns] = _mma_single_tile(acc[ms, ns], a[ms, ks], b[ns, ks])
return acc