DriverTrac/venv/lib/python3.12/site-packages/nvidia/cublas/include/cublasLt.h

2512 lines
100 KiB
C

/*
* Copyright 1993-2022 NVIDIA Corporation. All rights reserved.
*
* NOTICE TO LICENSEE:
*
* This source code and/or documentation ("Licensed Deliverables") are
* subject to NVIDIA intellectual property rights under U.S. and
* international Copyright laws.
*
* These Licensed Deliverables contained herein is PROPRIETARY and
* CONFIDENTIAL to NVIDIA and is being provided under the terms and
* conditions of a form of NVIDIA software license agreement by and
* between NVIDIA and Licensee ("License Agreement") or electronically
* accepted by Licensee. Notwithstanding any terms or conditions to
* the contrary in the License Agreement, reproduction or disclosure
* of the Licensed Deliverables to any third party without the express
* written consent of NVIDIA is prohibited.
*
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, NVIDIA MAKES NO REPRESENTATION ABOUT THE
* SUITABILITY OF THESE LICENSED DELIVERABLES FOR ANY PURPOSE. IT IS
* PROVIDED "AS IS" WITHOUT EXPRESS OR IMPLIED WARRANTY OF ANY KIND.
* NVIDIA DISCLAIMS ALL WARRANTIES WITH REGARD TO THESE LICENSED
* DELIVERABLES, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY,
* NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, IN NO EVENT SHALL NVIDIA BE LIABLE FOR ANY
* SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, OR ANY
* DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
* WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
* ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
* OF THESE LICENSED DELIVERABLES.
*
* U.S. Government End Users. These Licensed Deliverables are a
* "commercial item" as that term is defined at 48 C.F.R. 2.101 (OCT
* 1995), consisting of "commercial computer software" and "commercial
* computer software documentation" as such terms are used in 48
* C.F.R. 12.212 (SEPT 1995) and is provided to the U.S. Government
* only as a commercial end item. Consistent with 48 C.F.R.12.212 and
* 48 C.F.R. 227.7202-1 through 227.7202-4 (JUNE 1995), all
* U.S. Government End Users acquire the Licensed Deliverables with
* only those rights set forth herein.
*
* Any use of the Licensed Deliverables in individual and commercial
* software must include, in the user documentation and internal
* comments to the code, the above Disclaimer and U.S. Government End
* Users Notice.
*/
#pragma once
#ifndef CUBLASAPI
#ifdef __CUDACC__
#define CUBLASAPI __host__ __device__
#else
#define CUBLASAPI
#endif
#endif
#include <cublas_api.h>
#include <stdint.h>
#include <stddef.h>
#include <stdio.h>
#if defined(__cplusplus)
extern "C" {
#endif /* __cplusplus */
/** Opaque structure holding CUBLASLT context
*/
typedef struct cublasLtContext* cublasLtHandle_t;
cublasStatus_t CUBLASWINAPI cublasLtCreate(cublasLtHandle_t* lightHandle);
cublasStatus_t CUBLASWINAPI cublasLtDestroy(cublasLtHandle_t lightHandle);
const char* CUBLASWINAPI cublasLtGetStatusName(cublasStatus_t status);
const char* CUBLASWINAPI cublasLtGetStatusString(cublasStatus_t status);
size_t CUBLASWINAPI cublasLtGetVersion(void);
size_t CUBLASWINAPI cublasLtGetCudartVersion(void);
cublasStatus_t CUBLASWINAPI cublasLtGetProperty(libraryPropertyType type, int* value);
cublasStatus_t CUBLASWINAPI cublasLtHeuristicsCacheGetCapacity(size_t* capacity);
cublasStatus_t CUBLASWINAPI cublasLtHeuristicsCacheSetCapacity(size_t capacity);
/** Restricts usage of CPU instructions (ISA) specified by the flags in the mask.
*
* Flags can be combined with bitwise OR(|) operator. Supported flags:
* - 0x1 -- x86-64 AVX512 ISA
*
* Default mask: 0 (any applicable ISA is allowed).
*
* The function returns the previous value of the mask.
* The function takes precedence over the environment variable CUBLASLT_DISABLE_CPU_INSTRUCTIONS_MASK.
*/
unsigned CUBLASWINAPI cublasLtDisableCpuInstructionsSetMask(unsigned mask);
/** Semi-opaque descriptor for matrix memory layout
*/
typedef struct {
uint64_t data[8];
} cublasLtMatrixLayoutOpaque_t;
/** Opaque descriptor for matrix memory layout
*/
typedef cublasLtMatrixLayoutOpaque_t* cublasLtMatrixLayout_t;
/** Semi-opaque algorithm descriptor (to avoid complicated alloc/free schemes)
*
* This structure can be trivially serialized and later restored for use with the same version of cuBLAS library to save
* on selecting the right configuration again.
*/
typedef struct {
uint64_t data[8];
} cublasLtMatmulAlgo_t;
/** Semi-opaque descriptor for cublasLtMatmul() operation details
*/
typedef struct {
uint64_t data[32];
} cublasLtMatmulDescOpaque_t;
/** Opaque descriptor for cublasLtMatmul() operation details
*/
typedef cublasLtMatmulDescOpaque_t* cublasLtMatmulDesc_t;
/** Semi-opaque descriptor for cublasLtMatrixTransform() operation details
*/
typedef struct {
uint64_t data[8];
} cublasLtMatrixTransformDescOpaque_t;
/** Opaque descriptor for cublasLtMatrixTransform() operation details
*/
typedef cublasLtMatrixTransformDescOpaque_t* cublasLtMatrixTransformDesc_t;
/** Semi-opaque descriptor for cublasLtMatmulPreference() operation details
*/
typedef struct {
uint64_t data[8];
} cublasLtMatmulPreferenceOpaque_t;
/** Opaque descriptor for cublasLtMatmulAlgoGetHeuristic() configuration
*/
typedef cublasLtMatmulPreferenceOpaque_t* cublasLtMatmulPreference_t;
/** Tile size (in C/D matrix Rows x Cols)
*
* General order of tile IDs is sorted by size first and by first dimension second.
*/
typedef enum {
CUBLASLT_MATMUL_TILE_UNDEFINED = 0,
CUBLASLT_MATMUL_TILE_8x8 = 1,
CUBLASLT_MATMUL_TILE_8x16 = 2,
CUBLASLT_MATMUL_TILE_16x8 = 3,
CUBLASLT_MATMUL_TILE_8x32 = 4,
CUBLASLT_MATMUL_TILE_16x16 = 5,
CUBLASLT_MATMUL_TILE_32x8 = 6,
CUBLASLT_MATMUL_TILE_8x64 = 7,
CUBLASLT_MATMUL_TILE_16x32 = 8,
CUBLASLT_MATMUL_TILE_32x16 = 9,
CUBLASLT_MATMUL_TILE_64x8 = 10,
CUBLASLT_MATMUL_TILE_32x32 = 11,
CUBLASLT_MATMUL_TILE_32x64 = 12,
CUBLASLT_MATMUL_TILE_64x32 = 13,
CUBLASLT_MATMUL_TILE_32x128 = 14,
CUBLASLT_MATMUL_TILE_64x64 = 15,
CUBLASLT_MATMUL_TILE_128x32 = 16,
CUBLASLT_MATMUL_TILE_64x128 = 17,
CUBLASLT_MATMUL_TILE_128x64 = 18,
CUBLASLT_MATMUL_TILE_64x256 = 19,
CUBLASLT_MATMUL_TILE_128x128 = 20,
CUBLASLT_MATMUL_TILE_256x64 = 21,
CUBLASLT_MATMUL_TILE_64x512 = 22,
CUBLASLT_MATMUL_TILE_128x256 = 23,
CUBLASLT_MATMUL_TILE_256x128 = 24,
CUBLASLT_MATMUL_TILE_512x64 = 25,
CUBLASLT_MATMUL_TILE_64x96 = 26,
CUBLASLT_MATMUL_TILE_96x64 = 27,
CUBLASLT_MATMUL_TILE_96x128 = 28,
CUBLASLT_MATMUL_TILE_128x160 = 29,
CUBLASLT_MATMUL_TILE_160x128 = 30,
CUBLASLT_MATMUL_TILE_192x128 = 31,
CUBLASLT_MATMUL_TILE_128x192 = 32,
CUBLASLT_MATMUL_TILE_128x96 = 33,
CUBLASLT_MATMUL_TILE_32x256 = 34,
CUBLASLT_MATMUL_TILE_256x32 = 35,
CUBLASLT_MATMUL_TILE_8x128 = 36,
CUBLASLT_MATMUL_TILE_8x192 = 37,
CUBLASLT_MATMUL_TILE_8x256 = 38,
CUBLASLT_MATMUL_TILE_8x320 = 39,
CUBLASLT_MATMUL_TILE_8x384 = 40,
CUBLASLT_MATMUL_TILE_8x448 = 41,
CUBLASLT_MATMUL_TILE_8x512 = 42,
CUBLASLT_MATMUL_TILE_8x576 = 43,
CUBLASLT_MATMUL_TILE_8x640 = 44,
CUBLASLT_MATMUL_TILE_8x704 = 45,
CUBLASLT_MATMUL_TILE_8x768 = 46,
CUBLASLT_MATMUL_TILE_16x64 = 47,
CUBLASLT_MATMUL_TILE_16x128 = 48,
CUBLASLT_MATMUL_TILE_16x192 = 49,
CUBLASLT_MATMUL_TILE_16x256 = 50,
CUBLASLT_MATMUL_TILE_16x320 = 51,
CUBLASLT_MATMUL_TILE_16x384 = 52,
CUBLASLT_MATMUL_TILE_16x448 = 53,
CUBLASLT_MATMUL_TILE_16x512 = 54,
CUBLASLT_MATMUL_TILE_16x576 = 55,
CUBLASLT_MATMUL_TILE_16x640 = 56,
CUBLASLT_MATMUL_TILE_16x704 = 57,
CUBLASLT_MATMUL_TILE_16x768 = 58,
CUBLASLT_MATMUL_TILE_24x64 = 59,
CUBLASLT_MATMUL_TILE_24x128 = 60,
CUBLASLT_MATMUL_TILE_24x192 = 61,
CUBLASLT_MATMUL_TILE_24x256 = 62,
CUBLASLT_MATMUL_TILE_24x320 = 63,
CUBLASLT_MATMUL_TILE_24x384 = 64,
CUBLASLT_MATMUL_TILE_24x448 = 65,
CUBLASLT_MATMUL_TILE_24x512 = 66,
CUBLASLT_MATMUL_TILE_24x576 = 67,
CUBLASLT_MATMUL_TILE_24x640 = 68,
CUBLASLT_MATMUL_TILE_24x704 = 69,
CUBLASLT_MATMUL_TILE_24x768 = 70,
CUBLASLT_MATMUL_TILE_32x192 = 71,
CUBLASLT_MATMUL_TILE_32x320 = 72,
CUBLASLT_MATMUL_TILE_32x384 = 73,
CUBLASLT_MATMUL_TILE_32x448 = 74,
CUBLASLT_MATMUL_TILE_32x512 = 75,
CUBLASLT_MATMUL_TILE_32x576 = 76,
CUBLASLT_MATMUL_TILE_32x640 = 77,
CUBLASLT_MATMUL_TILE_32x704 = 78,
CUBLASLT_MATMUL_TILE_32x768 = 79,
CUBLASLT_MATMUL_TILE_40x64 = 80,
CUBLASLT_MATMUL_TILE_40x128 = 81,
CUBLASLT_MATMUL_TILE_40x192 = 82,
CUBLASLT_MATMUL_TILE_40x256 = 83,
CUBLASLT_MATMUL_TILE_40x320 = 84,
CUBLASLT_MATMUL_TILE_40x384 = 85,
CUBLASLT_MATMUL_TILE_40x448 = 86,
CUBLASLT_MATMUL_TILE_40x512 = 87,
CUBLASLT_MATMUL_TILE_40x576 = 88,
CUBLASLT_MATMUL_TILE_40x640 = 89,
CUBLASLT_MATMUL_TILE_40x704 = 90,
CUBLASLT_MATMUL_TILE_40x768 = 91,
CUBLASLT_MATMUL_TILE_48x64 = 92,
CUBLASLT_MATMUL_TILE_48x128 = 93,
CUBLASLT_MATMUL_TILE_48x192 = 94,
CUBLASLT_MATMUL_TILE_48x256 = 95,
CUBLASLT_MATMUL_TILE_48x320 = 96,
CUBLASLT_MATMUL_TILE_48x384 = 97,
CUBLASLT_MATMUL_TILE_48x448 = 98,
CUBLASLT_MATMUL_TILE_48x512 = 99,
CUBLASLT_MATMUL_TILE_48x576 = 100,
CUBLASLT_MATMUL_TILE_48x640 = 101,
CUBLASLT_MATMUL_TILE_48x704 = 102,
CUBLASLT_MATMUL_TILE_48x768 = 103,
CUBLASLT_MATMUL_TILE_56x64 = 104,
CUBLASLT_MATMUL_TILE_56x128 = 105,
CUBLASLT_MATMUL_TILE_56x192 = 106,
CUBLASLT_MATMUL_TILE_56x256 = 107,
CUBLASLT_MATMUL_TILE_56x320 = 108,
CUBLASLT_MATMUL_TILE_56x384 = 109,
CUBLASLT_MATMUL_TILE_56x448 = 110,
CUBLASLT_MATMUL_TILE_56x512 = 111,
CUBLASLT_MATMUL_TILE_56x576 = 112,
CUBLASLT_MATMUL_TILE_56x640 = 113,
CUBLASLT_MATMUL_TILE_56x704 = 114,
CUBLASLT_MATMUL_TILE_56x768 = 115,
CUBLASLT_MATMUL_TILE_64x192 = 116,
CUBLASLT_MATMUL_TILE_64x320 = 117,
CUBLASLT_MATMUL_TILE_64x384 = 118,
CUBLASLT_MATMUL_TILE_64x448 = 119,
CUBLASLT_MATMUL_TILE_64x576 = 120,
CUBLASLT_MATMUL_TILE_64x640 = 121,
CUBLASLT_MATMUL_TILE_64x704 = 122,
CUBLASLT_MATMUL_TILE_64x768 = 123,
CUBLASLT_MATMUL_TILE_72x64 = 124,
CUBLASLT_MATMUL_TILE_72x128 = 125,
CUBLASLT_MATMUL_TILE_72x192 = 126,
CUBLASLT_MATMUL_TILE_72x256 = 127,
CUBLASLT_MATMUL_TILE_72x320 = 128,
CUBLASLT_MATMUL_TILE_72x384 = 129,
CUBLASLT_MATMUL_TILE_72x448 = 130,
CUBLASLT_MATMUL_TILE_72x512 = 131,
CUBLASLT_MATMUL_TILE_72x576 = 132,
CUBLASLT_MATMUL_TILE_72x640 = 133,
CUBLASLT_MATMUL_TILE_80x64 = 134,
CUBLASLT_MATMUL_TILE_80x128 = 135,
CUBLASLT_MATMUL_TILE_80x192 = 136,
CUBLASLT_MATMUL_TILE_80x256 = 137,
CUBLASLT_MATMUL_TILE_80x320 = 138,
CUBLASLT_MATMUL_TILE_80x384 = 139,
CUBLASLT_MATMUL_TILE_80x448 = 140,
CUBLASLT_MATMUL_TILE_80x512 = 141,
CUBLASLT_MATMUL_TILE_80x576 = 142,
CUBLASLT_MATMUL_TILE_88x64 = 143,
CUBLASLT_MATMUL_TILE_88x128 = 144,
CUBLASLT_MATMUL_TILE_88x192 = 145,
CUBLASLT_MATMUL_TILE_88x256 = 146,
CUBLASLT_MATMUL_TILE_88x320 = 147,
CUBLASLT_MATMUL_TILE_88x384 = 148,
CUBLASLT_MATMUL_TILE_88x448 = 149,
CUBLASLT_MATMUL_TILE_88x512 = 150,
CUBLASLT_MATMUL_TILE_96x192 = 151,
CUBLASLT_MATMUL_TILE_96x256 = 152,
CUBLASLT_MATMUL_TILE_96x320 = 153,
CUBLASLT_MATMUL_TILE_96x384 = 154,
CUBLASLT_MATMUL_TILE_96x448 = 155,
CUBLASLT_MATMUL_TILE_96x512 = 156,
CUBLASLT_MATMUL_TILE_104x64 = 157,
CUBLASLT_MATMUL_TILE_104x128 = 158,
CUBLASLT_MATMUL_TILE_104x192 = 159,
CUBLASLT_MATMUL_TILE_104x256 = 160,
CUBLASLT_MATMUL_TILE_104x320 = 161,
CUBLASLT_MATMUL_TILE_104x384 = 162,
CUBLASLT_MATMUL_TILE_104x448 = 163,
CUBLASLT_MATMUL_TILE_112x64 = 164,
CUBLASLT_MATMUL_TILE_112x128 = 165,
CUBLASLT_MATMUL_TILE_112x192 = 166,
CUBLASLT_MATMUL_TILE_112x256 = 167,
CUBLASLT_MATMUL_TILE_112x320 = 168,
CUBLASLT_MATMUL_TILE_112x384 = 169,
CUBLASLT_MATMUL_TILE_120x64 = 170,
CUBLASLT_MATMUL_TILE_120x128 = 171,
CUBLASLT_MATMUL_TILE_120x192 = 172,
CUBLASLT_MATMUL_TILE_120x256 = 173,
CUBLASLT_MATMUL_TILE_120x320 = 174,
CUBLASLT_MATMUL_TILE_120x384 = 175,
CUBLASLT_MATMUL_TILE_128x320 = 176,
CUBLASLT_MATMUL_TILE_128x384 = 177,
CUBLASLT_MATMUL_TILE_136x64 = 178,
CUBLASLT_MATMUL_TILE_136x128 = 179,
CUBLASLT_MATMUL_TILE_136x192 = 180,
CUBLASLT_MATMUL_TILE_136x256 = 181,
CUBLASLT_MATMUL_TILE_136x320 = 182,
CUBLASLT_MATMUL_TILE_144x64 = 183,
CUBLASLT_MATMUL_TILE_144x128 = 184,
CUBLASLT_MATMUL_TILE_144x192 = 185,
CUBLASLT_MATMUL_TILE_144x256 = 186,
CUBLASLT_MATMUL_TILE_144x320 = 187,
CUBLASLT_MATMUL_TILE_152x64 = 188,
CUBLASLT_MATMUL_TILE_152x128 = 189,
CUBLASLT_MATMUL_TILE_152x192 = 190,
CUBLASLT_MATMUL_TILE_152x256 = 191,
CUBLASLT_MATMUL_TILE_152x320 = 192,
CUBLASLT_MATMUL_TILE_160x64 = 193,
CUBLASLT_MATMUL_TILE_160x192 = 194,
CUBLASLT_MATMUL_TILE_160x256 = 195,
CUBLASLT_MATMUL_TILE_168x64 = 196,
CUBLASLT_MATMUL_TILE_168x128 = 197,
CUBLASLT_MATMUL_TILE_168x192 = 198,
CUBLASLT_MATMUL_TILE_168x256 = 199,
CUBLASLT_MATMUL_TILE_176x64 = 200,
CUBLASLT_MATMUL_TILE_176x128 = 201,
CUBLASLT_MATMUL_TILE_176x192 = 202,
CUBLASLT_MATMUL_TILE_176x256 = 203,
CUBLASLT_MATMUL_TILE_184x64 = 204,
CUBLASLT_MATMUL_TILE_184x128 = 205,
CUBLASLT_MATMUL_TILE_184x192 = 206,
CUBLASLT_MATMUL_TILE_184x256 = 207,
CUBLASLT_MATMUL_TILE_192x64 = 208,
CUBLASLT_MATMUL_TILE_192x192 = 209,
CUBLASLT_MATMUL_TILE_192x256 = 210,
CUBLASLT_MATMUL_TILE_200x64 = 211,
CUBLASLT_MATMUL_TILE_200x128 = 212,
CUBLASLT_MATMUL_TILE_200x192 = 213,
CUBLASLT_MATMUL_TILE_208x64 = 214,
CUBLASLT_MATMUL_TILE_208x128 = 215,
CUBLASLT_MATMUL_TILE_208x192 = 216,
CUBLASLT_MATMUL_TILE_216x64 = 217,
CUBLASLT_MATMUL_TILE_216x128 = 218,
CUBLASLT_MATMUL_TILE_216x192 = 219,
CUBLASLT_MATMUL_TILE_224x64 = 220,
CUBLASLT_MATMUL_TILE_224x128 = 221,
CUBLASLT_MATMUL_TILE_224x192 = 222,
CUBLASLT_MATMUL_TILE_232x64 = 223,
CUBLASLT_MATMUL_TILE_232x128 = 224,
CUBLASLT_MATMUL_TILE_232x192 = 225,
CUBLASLT_MATMUL_TILE_240x64 = 226,
CUBLASLT_MATMUL_TILE_240x128 = 227,
CUBLASLT_MATMUL_TILE_240x192 = 228,
CUBLASLT_MATMUL_TILE_248x64 = 229,
CUBLASLT_MATMUL_TILE_248x128 = 230,
CUBLASLT_MATMUL_TILE_248x192 = 231,
CUBLASLT_MATMUL_TILE_256x192 = 232,
CUBLASLT_MATMUL_TILE_264x64 = 233,
CUBLASLT_MATMUL_TILE_264x128 = 234,
CUBLASLT_MATMUL_TILE_272x64 = 235,
CUBLASLT_MATMUL_TILE_272x128 = 236,
CUBLASLT_MATMUL_TILE_280x64 = 237,
CUBLASLT_MATMUL_TILE_280x128 = 238,
CUBLASLT_MATMUL_TILE_288x64 = 239,
CUBLASLT_MATMUL_TILE_288x128 = 240,
CUBLASLT_MATMUL_TILE_296x64 = 241,
CUBLASLT_MATMUL_TILE_296x128 = 242,
CUBLASLT_MATMUL_TILE_304x64 = 243,
CUBLASLT_MATMUL_TILE_304x128 = 244,
CUBLASLT_MATMUL_TILE_312x64 = 245,
CUBLASLT_MATMUL_TILE_312x128 = 246,
CUBLASLT_MATMUL_TILE_320x64 = 247,
CUBLASLT_MATMUL_TILE_320x128 = 248,
CUBLASLT_MATMUL_TILE_328x64 = 249,
CUBLASLT_MATMUL_TILE_328x128 = 250,
CUBLASLT_MATMUL_TILE_336x64 = 251,
CUBLASLT_MATMUL_TILE_336x128 = 252,
CUBLASLT_MATMUL_TILE_344x64 = 253,
CUBLASLT_MATMUL_TILE_344x128 = 254,
CUBLASLT_MATMUL_TILE_352x64 = 255,
CUBLASLT_MATMUL_TILE_352x128 = 256,
CUBLASLT_MATMUL_TILE_360x64 = 257,
CUBLASLT_MATMUL_TILE_360x128 = 258,
CUBLASLT_MATMUL_TILE_368x64 = 259,
CUBLASLT_MATMUL_TILE_368x128 = 260,
CUBLASLT_MATMUL_TILE_376x64 = 261,
CUBLASLT_MATMUL_TILE_376x128 = 262,
CUBLASLT_MATMUL_TILE_384x64 = 263,
CUBLASLT_MATMUL_TILE_384x128 = 264,
CUBLASLT_MATMUL_TILE_392x64 = 265,
CUBLASLT_MATMUL_TILE_400x64 = 266,
CUBLASLT_MATMUL_TILE_408x64 = 267,
CUBLASLT_MATMUL_TILE_416x64 = 268,
CUBLASLT_MATMUL_TILE_424x64 = 269,
CUBLASLT_MATMUL_TILE_432x64 = 270,
CUBLASLT_MATMUL_TILE_440x64 = 271,
CUBLASLT_MATMUL_TILE_448x64 = 272,
CUBLASLT_MATMUL_TILE_456x64 = 273,
CUBLASLT_MATMUL_TILE_464x64 = 274,
CUBLASLT_MATMUL_TILE_472x64 = 275,
CUBLASLT_MATMUL_TILE_480x64 = 276,
CUBLASLT_MATMUL_TILE_488x64 = 277,
CUBLASLT_MATMUL_TILE_496x64 = 278,
CUBLASLT_MATMUL_TILE_504x64 = 279,
CUBLASLT_MATMUL_TILE_520x64 = 280,
CUBLASLT_MATMUL_TILE_528x64 = 281,
CUBLASLT_MATMUL_TILE_536x64 = 282,
CUBLASLT_MATMUL_TILE_544x64 = 283,
CUBLASLT_MATMUL_TILE_552x64 = 284,
CUBLASLT_MATMUL_TILE_560x64 = 285,
CUBLASLT_MATMUL_TILE_568x64 = 286,
CUBLASLT_MATMUL_TILE_576x64 = 287,
CUBLASLT_MATMUL_TILE_584x64 = 288,
CUBLASLT_MATMUL_TILE_592x64 = 289,
CUBLASLT_MATMUL_TILE_600x64 = 290,
CUBLASLT_MATMUL_TILE_608x64 = 291,
CUBLASLT_MATMUL_TILE_616x64 = 292,
CUBLASLT_MATMUL_TILE_624x64 = 293,
CUBLASLT_MATMUL_TILE_632x64 = 294,
CUBLASLT_MATMUL_TILE_640x64 = 295,
CUBLASLT_MATMUL_TILE_648x64 = 296,
CUBLASLT_MATMUL_TILE_656x64 = 297,
CUBLASLT_MATMUL_TILE_664x64 = 298,
CUBLASLT_MATMUL_TILE_672x64 = 299,
CUBLASLT_MATMUL_TILE_680x64 = 300,
CUBLASLT_MATMUL_TILE_688x64 = 301,
CUBLASLT_MATMUL_TILE_696x64 = 302,
CUBLASLT_MATMUL_TILE_704x64 = 303,
CUBLASLT_MATMUL_TILE_712x64 = 304,
CUBLASLT_MATMUL_TILE_720x64 = 305,
CUBLASLT_MATMUL_TILE_728x64 = 306,
CUBLASLT_MATMUL_TILE_736x64 = 307,
CUBLASLT_MATMUL_TILE_744x64 = 308,
CUBLASLT_MATMUL_TILE_752x64 = 309,
CUBLASLT_MATMUL_TILE_760x64 = 310,
CUBLASLT_MATMUL_TILE_768x64 = 311,
CUBLASLT_MATMUL_TILE_64x16 = 312,
CUBLASLT_MATMUL_TILE_64x24 = 313,
CUBLASLT_MATMUL_TILE_64x40 = 314,
CUBLASLT_MATMUL_TILE_64x48 = 315,
CUBLASLT_MATMUL_TILE_64x56 = 316,
CUBLASLT_MATMUL_TILE_64x72 = 317,
CUBLASLT_MATMUL_TILE_64x80 = 318,
CUBLASLT_MATMUL_TILE_64x88 = 319,
CUBLASLT_MATMUL_TILE_64x104 = 320,
CUBLASLT_MATMUL_TILE_64x112 = 321,
CUBLASLT_MATMUL_TILE_64x120 = 322,
CUBLASLT_MATMUL_TILE_64x136 = 323,
CUBLASLT_MATMUL_TILE_64x144 = 324,
CUBLASLT_MATMUL_TILE_64x152 = 325,
CUBLASLT_MATMUL_TILE_64x160 = 326,
CUBLASLT_MATMUL_TILE_64x168 = 327,
CUBLASLT_MATMUL_TILE_64x176 = 328,
CUBLASLT_MATMUL_TILE_64x184 = 329,
CUBLASLT_MATMUL_TILE_64x200 = 330,
CUBLASLT_MATMUL_TILE_64x208 = 331,
CUBLASLT_MATMUL_TILE_64x216 = 332,
CUBLASLT_MATMUL_TILE_64x224 = 333,
CUBLASLT_MATMUL_TILE_64x232 = 334,
CUBLASLT_MATMUL_TILE_64x240 = 335,
CUBLASLT_MATMUL_TILE_64x248 = 336,
CUBLASLT_MATMUL_TILE_64x264 = 337,
CUBLASLT_MATMUL_TILE_64x272 = 338,
CUBLASLT_MATMUL_TILE_64x280 = 339,
CUBLASLT_MATMUL_TILE_64x288 = 340,
CUBLASLT_MATMUL_TILE_64x296 = 341,
CUBLASLT_MATMUL_TILE_64x304 = 342,
CUBLASLT_MATMUL_TILE_64x312 = 343,
CUBLASLT_MATMUL_TILE_64x328 = 344,
CUBLASLT_MATMUL_TILE_64x336 = 345,
CUBLASLT_MATMUL_TILE_64x344 = 346,
CUBLASLT_MATMUL_TILE_64x352 = 347,
CUBLASLT_MATMUL_TILE_64x360 = 348,
CUBLASLT_MATMUL_TILE_64x368 = 349,
CUBLASLT_MATMUL_TILE_64x376 = 350,
CUBLASLT_MATMUL_TILE_64x392 = 351,
CUBLASLT_MATMUL_TILE_64x400 = 352,
CUBLASLT_MATMUL_TILE_64x408 = 353,
CUBLASLT_MATMUL_TILE_64x416 = 354,
CUBLASLT_MATMUL_TILE_64x424 = 355,
CUBLASLT_MATMUL_TILE_64x432 = 356,
CUBLASLT_MATMUL_TILE_64x440 = 357,
CUBLASLT_MATMUL_TILE_64x456 = 358,
CUBLASLT_MATMUL_TILE_64x464 = 359,
CUBLASLT_MATMUL_TILE_64x472 = 360,
CUBLASLT_MATMUL_TILE_64x480 = 361,
CUBLASLT_MATMUL_TILE_64x488 = 362,
CUBLASLT_MATMUL_TILE_64x496 = 363,
CUBLASLT_MATMUL_TILE_64x504 = 364,
CUBLASLT_MATMUL_TILE_64x520 = 365,
CUBLASLT_MATMUL_TILE_64x528 = 366,
CUBLASLT_MATMUL_TILE_64x536 = 367,
CUBLASLT_MATMUL_TILE_64x544 = 368,
CUBLASLT_MATMUL_TILE_64x552 = 369,
CUBLASLT_MATMUL_TILE_64x560 = 370,
CUBLASLT_MATMUL_TILE_64x568 = 371,
CUBLASLT_MATMUL_TILE_64x584 = 372,
CUBLASLT_MATMUL_TILE_64x592 = 373,
CUBLASLT_MATMUL_TILE_64x600 = 374,
CUBLASLT_MATMUL_TILE_64x608 = 375,
CUBLASLT_MATMUL_TILE_64x616 = 376,
CUBLASLT_MATMUL_TILE_64x624 = 377,
CUBLASLT_MATMUL_TILE_64x632 = 378,
CUBLASLT_MATMUL_TILE_64x648 = 379,
CUBLASLT_MATMUL_TILE_64x656 = 380,
CUBLASLT_MATMUL_TILE_64x664 = 381,
CUBLASLT_MATMUL_TILE_64x672 = 382,
CUBLASLT_MATMUL_TILE_64x680 = 383,
CUBLASLT_MATMUL_TILE_64x688 = 384,
CUBLASLT_MATMUL_TILE_64x696 = 385,
CUBLASLT_MATMUL_TILE_64x712 = 386,
CUBLASLT_MATMUL_TILE_64x720 = 387,
CUBLASLT_MATMUL_TILE_64x728 = 388,
CUBLASLT_MATMUL_TILE_64x736 = 389,
CUBLASLT_MATMUL_TILE_64x744 = 390,
CUBLASLT_MATMUL_TILE_64x752 = 391,
CUBLASLT_MATMUL_TILE_64x760 = 392,
CUBLASLT_MATMUL_TILE_128x8 = 393,
CUBLASLT_MATMUL_TILE_128x16 = 394,
CUBLASLT_MATMUL_TILE_128x24 = 395,
CUBLASLT_MATMUL_TILE_128x40 = 396,
CUBLASLT_MATMUL_TILE_128x48 = 397,
CUBLASLT_MATMUL_TILE_128x56 = 398,
CUBLASLT_MATMUL_TILE_128x72 = 399,
CUBLASLT_MATMUL_TILE_128x80 = 400,
CUBLASLT_MATMUL_TILE_128x88 = 401,
CUBLASLT_MATMUL_TILE_128x104 = 402,
CUBLASLT_MATMUL_TILE_128x112 = 403,
CUBLASLT_MATMUL_TILE_128x120 = 404,
CUBLASLT_MATMUL_TILE_128x136 = 405,
CUBLASLT_MATMUL_TILE_128x144 = 406,
CUBLASLT_MATMUL_TILE_128x152 = 407,
CUBLASLT_MATMUL_TILE_128x168 = 408,
CUBLASLT_MATMUL_TILE_128x176 = 409,
CUBLASLT_MATMUL_TILE_128x184 = 410,
CUBLASLT_MATMUL_TILE_128x200 = 411,
CUBLASLT_MATMUL_TILE_128x208 = 412,
CUBLASLT_MATMUL_TILE_128x216 = 413,
CUBLASLT_MATMUL_TILE_128x224 = 414,
CUBLASLT_MATMUL_TILE_128x232 = 415,
CUBLASLT_MATMUL_TILE_128x240 = 416,
CUBLASLT_MATMUL_TILE_128x248 = 417,
CUBLASLT_MATMUL_TILE_128x264 = 418,
CUBLASLT_MATMUL_TILE_128x272 = 419,
CUBLASLT_MATMUL_TILE_128x280 = 420,
CUBLASLT_MATMUL_TILE_128x288 = 421,
CUBLASLT_MATMUL_TILE_128x296 = 422,
CUBLASLT_MATMUL_TILE_128x304 = 423,
CUBLASLT_MATMUL_TILE_128x312 = 424,
CUBLASLT_MATMUL_TILE_128x328 = 425,
CUBLASLT_MATMUL_TILE_128x336 = 426,
CUBLASLT_MATMUL_TILE_128x344 = 427,
CUBLASLT_MATMUL_TILE_128x352 = 428,
CUBLASLT_MATMUL_TILE_128x360 = 429,
CUBLASLT_MATMUL_TILE_128x368 = 430,
CUBLASLT_MATMUL_TILE_128x376 = 431,
CUBLASLT_MATMUL_TILE_128x392 = 432,
CUBLASLT_MATMUL_TILE_128x400 = 433,
CUBLASLT_MATMUL_TILE_128x408 = 434,
CUBLASLT_MATMUL_TILE_128x416 = 435,
CUBLASLT_MATMUL_TILE_128x424 = 436,
CUBLASLT_MATMUL_TILE_128x432 = 437,
CUBLASLT_MATMUL_TILE_128x440 = 438,
CUBLASLT_MATMUL_TILE_128x448 = 439,
CUBLASLT_MATMUL_TILE_128x456 = 440,
CUBLASLT_MATMUL_TILE_128x464 = 441,
CUBLASLT_MATMUL_TILE_128x472 = 442,
CUBLASLT_MATMUL_TILE_128x480 = 443,
CUBLASLT_MATMUL_TILE_128x488 = 444,
CUBLASLT_MATMUL_TILE_128x496 = 445,
CUBLASLT_MATMUL_TILE_128x504 = 446,
CUBLASLT_MATMUL_TILE_128x512 = 447,
CUBLASLT_MATMUL_TILE_192x8 = 448,
CUBLASLT_MATMUL_TILE_192x16 = 449,
CUBLASLT_MATMUL_TILE_192x24 = 450,
CUBLASLT_MATMUL_TILE_192x32 = 451,
CUBLASLT_MATMUL_TILE_192x40 = 452,
CUBLASLT_MATMUL_TILE_192x48 = 453,
CUBLASLT_MATMUL_TILE_192x56 = 454,
CUBLASLT_MATMUL_TILE_192x72 = 455,
CUBLASLT_MATMUL_TILE_192x80 = 456,
CUBLASLT_MATMUL_TILE_192x88 = 457,
CUBLASLT_MATMUL_TILE_192x96 = 458,
CUBLASLT_MATMUL_TILE_192x104 = 459,
CUBLASLT_MATMUL_TILE_192x112 = 460,
CUBLASLT_MATMUL_TILE_192x120 = 461,
CUBLASLT_MATMUL_TILE_192x136 = 462,
CUBLASLT_MATMUL_TILE_192x144 = 463,
CUBLASLT_MATMUL_TILE_192x152 = 464,
CUBLASLT_MATMUL_TILE_192x160 = 465,
CUBLASLT_MATMUL_TILE_192x168 = 466,
CUBLASLT_MATMUL_TILE_192x176 = 467,
CUBLASLT_MATMUL_TILE_192x184 = 468,
CUBLASLT_MATMUL_TILE_192x200 = 469,
CUBLASLT_MATMUL_TILE_192x208 = 470,
CUBLASLT_MATMUL_TILE_192x216 = 471,
CUBLASLT_MATMUL_TILE_192x224 = 472,
CUBLASLT_MATMUL_TILE_192x232 = 473,
CUBLASLT_MATMUL_TILE_192x240 = 474,
CUBLASLT_MATMUL_TILE_192x248 = 475,
CUBLASLT_MATMUL_TILE_192x264 = 476,
CUBLASLT_MATMUL_TILE_192x272 = 477,
CUBLASLT_MATMUL_TILE_192x280 = 478,
CUBLASLT_MATMUL_TILE_192x288 = 479,
CUBLASLT_MATMUL_TILE_192x296 = 480,
CUBLASLT_MATMUL_TILE_192x304 = 481,
CUBLASLT_MATMUL_TILE_192x312 = 482,
CUBLASLT_MATMUL_TILE_192x320 = 483,
CUBLASLT_MATMUL_TILE_192x328 = 484,
CUBLASLT_MATMUL_TILE_192x336 = 485,
CUBLASLT_MATMUL_TILE_256x8 = 486,
CUBLASLT_MATMUL_TILE_256x16 = 487,
CUBLASLT_MATMUL_TILE_256x24 = 488,
CUBLASLT_MATMUL_TILE_256x40 = 489,
CUBLASLT_MATMUL_TILE_256x48 = 490,
CUBLASLT_MATMUL_TILE_256x56 = 491,
CUBLASLT_MATMUL_TILE_256x72 = 492,
CUBLASLT_MATMUL_TILE_256x80 = 493,
CUBLASLT_MATMUL_TILE_256x88 = 494,
CUBLASLT_MATMUL_TILE_256x96 = 495,
CUBLASLT_MATMUL_TILE_256x104 = 496,
CUBLASLT_MATMUL_TILE_256x112 = 497,
CUBLASLT_MATMUL_TILE_256x120 = 498,
CUBLASLT_MATMUL_TILE_256x136 = 499,
CUBLASLT_MATMUL_TILE_256x144 = 500,
CUBLASLT_MATMUL_TILE_256x152 = 501,
CUBLASLT_MATMUL_TILE_256x160 = 502,
CUBLASLT_MATMUL_TILE_256x168 = 503,
CUBLASLT_MATMUL_TILE_256x176 = 504,
CUBLASLT_MATMUL_TILE_256x184 = 505,
CUBLASLT_MATMUL_TILE_256x200 = 506,
CUBLASLT_MATMUL_TILE_256x208 = 507,
CUBLASLT_MATMUL_TILE_256x216 = 508,
CUBLASLT_MATMUL_TILE_256x224 = 509,
CUBLASLT_MATMUL_TILE_256x232 = 510,
CUBLASLT_MATMUL_TILE_256x240 = 511,
CUBLASLT_MATMUL_TILE_256x248 = 512,
CUBLASLT_MATMUL_TILE_256x256 = 513,
CUBLASLT_MATMUL_TILE_320x8 = 514,
CUBLASLT_MATMUL_TILE_320x16 = 515,
CUBLASLT_MATMUL_TILE_320x24 = 516,
CUBLASLT_MATMUL_TILE_320x32 = 517,
CUBLASLT_MATMUL_TILE_320x40 = 518,
CUBLASLT_MATMUL_TILE_320x48 = 519,
CUBLASLT_MATMUL_TILE_320x56 = 520,
CUBLASLT_MATMUL_TILE_320x72 = 521,
CUBLASLT_MATMUL_TILE_320x80 = 522,
CUBLASLT_MATMUL_TILE_320x88 = 523,
CUBLASLT_MATMUL_TILE_320x96 = 524,
CUBLASLT_MATMUL_TILE_320x104 = 525,
CUBLASLT_MATMUL_TILE_320x112 = 526,
CUBLASLT_MATMUL_TILE_320x120 = 527,
CUBLASLT_MATMUL_TILE_320x136 = 528,
CUBLASLT_MATMUL_TILE_320x144 = 529,
CUBLASLT_MATMUL_TILE_320x152 = 530,
CUBLASLT_MATMUL_TILE_320x160 = 531,
CUBLASLT_MATMUL_TILE_320x168 = 532,
CUBLASLT_MATMUL_TILE_320x176 = 533,
CUBLASLT_MATMUL_TILE_320x184 = 534,
CUBLASLT_MATMUL_TILE_320x192 = 535,
CUBLASLT_MATMUL_TILE_320x200 = 536,
CUBLASLT_MATMUL_TILE_384x8 = 537,
CUBLASLT_MATMUL_TILE_384x16 = 538,
CUBLASLT_MATMUL_TILE_384x24 = 539,
CUBLASLT_MATMUL_TILE_384x32 = 540,
CUBLASLT_MATMUL_TILE_384x40 = 541,
CUBLASLT_MATMUL_TILE_384x48 = 542,
CUBLASLT_MATMUL_TILE_384x56 = 543,
CUBLASLT_MATMUL_TILE_384x72 = 544,
CUBLASLT_MATMUL_TILE_384x80 = 545,
CUBLASLT_MATMUL_TILE_384x88 = 546,
CUBLASLT_MATMUL_TILE_384x96 = 547,
CUBLASLT_MATMUL_TILE_384x104 = 548,
CUBLASLT_MATMUL_TILE_384x112 = 549,
CUBLASLT_MATMUL_TILE_384x120 = 550,
CUBLASLT_MATMUL_TILE_384x136 = 551,
CUBLASLT_MATMUL_TILE_384x144 = 552,
CUBLASLT_MATMUL_TILE_384x152 = 553,
CUBLASLT_MATMUL_TILE_384x160 = 554,
CUBLASLT_MATMUL_TILE_384x168 = 555,
CUBLASLT_MATMUL_TILE_448x8 = 556,
CUBLASLT_MATMUL_TILE_448x16 = 557,
CUBLASLT_MATMUL_TILE_448x24 = 558,
CUBLASLT_MATMUL_TILE_448x32 = 559,
CUBLASLT_MATMUL_TILE_448x40 = 560,
CUBLASLT_MATMUL_TILE_448x48 = 561,
CUBLASLT_MATMUL_TILE_448x56 = 562,
CUBLASLT_MATMUL_TILE_448x72 = 563,
CUBLASLT_MATMUL_TILE_448x80 = 564,
CUBLASLT_MATMUL_TILE_448x88 = 565,
CUBLASLT_MATMUL_TILE_448x96 = 566,
CUBLASLT_MATMUL_TILE_448x104 = 567,
CUBLASLT_MATMUL_TILE_448x112 = 568,
CUBLASLT_MATMUL_TILE_448x120 = 569,
CUBLASLT_MATMUL_TILE_448x128 = 570,
CUBLASLT_MATMUL_TILE_448x136 = 571,
CUBLASLT_MATMUL_TILE_448x144 = 572,
CUBLASLT_MATMUL_TILE_512x8 = 573,
CUBLASLT_MATMUL_TILE_512x16 = 574,
CUBLASLT_MATMUL_TILE_512x24 = 575,
CUBLASLT_MATMUL_TILE_512x32 = 576,
CUBLASLT_MATMUL_TILE_512x40 = 577,
CUBLASLT_MATMUL_TILE_512x48 = 578,
CUBLASLT_MATMUL_TILE_512x56 = 579,
CUBLASLT_MATMUL_TILE_512x72 = 580,
CUBLASLT_MATMUL_TILE_512x80 = 581,
CUBLASLT_MATMUL_TILE_512x88 = 582,
CUBLASLT_MATMUL_TILE_512x96 = 583,
CUBLASLT_MATMUL_TILE_512x104 = 584,
CUBLASLT_MATMUL_TILE_512x112 = 585,
CUBLASLT_MATMUL_TILE_512x120 = 586,
CUBLASLT_MATMUL_TILE_512x128 = 587,
CUBLASLT_MATMUL_TILE_576x8 = 588,
CUBLASLT_MATMUL_TILE_576x16 = 589,
CUBLASLT_MATMUL_TILE_576x24 = 590,
CUBLASLT_MATMUL_TILE_576x32 = 591,
CUBLASLT_MATMUL_TILE_576x40 = 592,
CUBLASLT_MATMUL_TILE_576x48 = 593,
CUBLASLT_MATMUL_TILE_576x56 = 594,
CUBLASLT_MATMUL_TILE_576x72 = 595,
CUBLASLT_MATMUL_TILE_576x80 = 596,
CUBLASLT_MATMUL_TILE_576x88 = 597,
CUBLASLT_MATMUL_TILE_576x96 = 598,
CUBLASLT_MATMUL_TILE_576x104 = 599,
CUBLASLT_MATMUL_TILE_576x112 = 600,
CUBLASLT_MATMUL_TILE_640x8 = 601,
CUBLASLT_MATMUL_TILE_640x16 = 602,
CUBLASLT_MATMUL_TILE_640x24 = 603,
CUBLASLT_MATMUL_TILE_640x32 = 604,
CUBLASLT_MATMUL_TILE_640x40 = 605,
CUBLASLT_MATMUL_TILE_640x48 = 606,
CUBLASLT_MATMUL_TILE_640x56 = 607,
CUBLASLT_MATMUL_TILE_640x72 = 608,
CUBLASLT_MATMUL_TILE_640x80 = 609,
CUBLASLT_MATMUL_TILE_640x88 = 610,
CUBLASLT_MATMUL_TILE_640x96 = 611,
CUBLASLT_MATMUL_TILE_704x8 = 612,
CUBLASLT_MATMUL_TILE_704x16 = 613,
CUBLASLT_MATMUL_TILE_704x24 = 614,
CUBLASLT_MATMUL_TILE_704x32 = 615,
CUBLASLT_MATMUL_TILE_704x40 = 616,
CUBLASLT_MATMUL_TILE_704x48 = 617,
CUBLASLT_MATMUL_TILE_704x56 = 618,
CUBLASLT_MATMUL_TILE_704x72 = 619,
CUBLASLT_MATMUL_TILE_704x80 = 620,
CUBLASLT_MATMUL_TILE_704x88 = 621,
CUBLASLT_MATMUL_TILE_768x8 = 622,
CUBLASLT_MATMUL_TILE_768x16 = 623,
CUBLASLT_MATMUL_TILE_768x24 = 624,
CUBLASLT_MATMUL_TILE_768x32 = 625,
CUBLASLT_MATMUL_TILE_768x40 = 626,
CUBLASLT_MATMUL_TILE_768x48 = 627,
CUBLASLT_MATMUL_TILE_768x56 = 628,
CUBLASLT_MATMUL_TILE_768x72 = 629,
CUBLASLT_MATMUL_TILE_768x80 = 630,
CUBLASLT_MATMUL_TILE_256x512 = 631,
CUBLASLT_MATMUL_TILE_256x1024 = 632,
CUBLASLT_MATMUL_TILE_512x512 = 633,
CUBLASLT_MATMUL_TILE_512x1024 = 634,
CUBLASLT_MATMUL_TILE_END
} cublasLtMatmulTile_t;
/** Size and number of stages in which elements are read into shared memory
*
* General order of stages IDs is sorted by stage size first and by number of stages second.
*/
typedef enum {
CUBLASLT_MATMUL_STAGES_UNDEFINED = 0,
CUBLASLT_MATMUL_STAGES_16x1 = 1,
CUBLASLT_MATMUL_STAGES_16x2 = 2,
CUBLASLT_MATMUL_STAGES_16x3 = 3,
CUBLASLT_MATMUL_STAGES_16x4 = 4,
CUBLASLT_MATMUL_STAGES_16x5 = 5,
CUBLASLT_MATMUL_STAGES_16x6 = 6,
CUBLASLT_MATMUL_STAGES_32x1 = 7,
CUBLASLT_MATMUL_STAGES_32x2 = 8,
CUBLASLT_MATMUL_STAGES_32x3 = 9,
CUBLASLT_MATMUL_STAGES_32x4 = 10,
CUBLASLT_MATMUL_STAGES_32x5 = 11,
CUBLASLT_MATMUL_STAGES_32x6 = 12,
CUBLASLT_MATMUL_STAGES_64x1 = 13,
CUBLASLT_MATMUL_STAGES_64x2 = 14,
CUBLASLT_MATMUL_STAGES_64x3 = 15,
CUBLASLT_MATMUL_STAGES_64x4 = 16,
CUBLASLT_MATMUL_STAGES_64x5 = 17,
CUBLASLT_MATMUL_STAGES_64x6 = 18,
CUBLASLT_MATMUL_STAGES_128x1 = 19,
CUBLASLT_MATMUL_STAGES_128x2 = 20,
CUBLASLT_MATMUL_STAGES_128x3 = 21,
CUBLASLT_MATMUL_STAGES_128x4 = 22,
CUBLASLT_MATMUL_STAGES_128x5 = 23,
CUBLASLT_MATMUL_STAGES_128x6 = 24,
CUBLASLT_MATMUL_STAGES_32x10 = 25,
CUBLASLT_MATMUL_STAGES_8x4 = 26,
CUBLASLT_MATMUL_STAGES_16x10 = 27,
CUBLASLT_MATMUL_STAGES_8x5 = 28,
CUBLASLT_MATMUL_STAGES_8x3 = 31,
CUBLASLT_MATMUL_STAGES_8xAUTO = 32,
CUBLASLT_MATMUL_STAGES_16xAUTO = 33,
CUBLASLT_MATMUL_STAGES_32xAUTO = 34,
CUBLASLT_MATMUL_STAGES_64xAUTO = 35,
CUBLASLT_MATMUL_STAGES_128xAUTO = 36,
CUBLASLT_MATMUL_STAGES_256xAUTO = 37,
CUBLASLT_MATMUL_STAGES_END
} cublasLtMatmulStages_t;
/** Thread Block Cluster size
*
* Typically dimensioned similar to cublasLtMatmulTile_t, with the third coordinate unused at this time.
*/
typedef enum {
/** Let library pick cluster shape automatically */
CUBLASLT_CLUSTER_SHAPE_AUTO = 0,
CUBLASLT_CLUSTER_SHAPE_1x1x1 = 2,
CUBLASLT_CLUSTER_SHAPE_2x1x1 = 3,
CUBLASLT_CLUSTER_SHAPE_4x1x1 = 4,
CUBLASLT_CLUSTER_SHAPE_1x2x1 = 5,
CUBLASLT_CLUSTER_SHAPE_2x2x1 = 6,
CUBLASLT_CLUSTER_SHAPE_4x2x1 = 7,
CUBLASLT_CLUSTER_SHAPE_1x4x1 = 8,
CUBLASLT_CLUSTER_SHAPE_2x4x1 = 9,
CUBLASLT_CLUSTER_SHAPE_4x4x1 = 10,
CUBLASLT_CLUSTER_SHAPE_8x1x1 = 11,
CUBLASLT_CLUSTER_SHAPE_1x8x1 = 12,
CUBLASLT_CLUSTER_SHAPE_8x2x1 = 13,
CUBLASLT_CLUSTER_SHAPE_2x8x1 = 14,
CUBLASLT_CLUSTER_SHAPE_16x1x1 = 15,
CUBLASLT_CLUSTER_SHAPE_1x16x1 = 16,
CUBLASLT_CLUSTER_SHAPE_3x1x1 = 17,
CUBLASLT_CLUSTER_SHAPE_5x1x1 = 18,
CUBLASLT_CLUSTER_SHAPE_6x1x1 = 19,
CUBLASLT_CLUSTER_SHAPE_7x1x1 = 20,
CUBLASLT_CLUSTER_SHAPE_9x1x1 = 21,
CUBLASLT_CLUSTER_SHAPE_10x1x1 = 22,
CUBLASLT_CLUSTER_SHAPE_11x1x1 = 23,
CUBLASLT_CLUSTER_SHAPE_12x1x1 = 24,
CUBLASLT_CLUSTER_SHAPE_13x1x1 = 25,
CUBLASLT_CLUSTER_SHAPE_14x1x1 = 26,
CUBLASLT_CLUSTER_SHAPE_15x1x1 = 27,
CUBLASLT_CLUSTER_SHAPE_3x2x1 = 28,
CUBLASLT_CLUSTER_SHAPE_5x2x1 = 29,
CUBLASLT_CLUSTER_SHAPE_6x2x1 = 30,
CUBLASLT_CLUSTER_SHAPE_7x2x1 = 31,
CUBLASLT_CLUSTER_SHAPE_1x3x1 = 32,
CUBLASLT_CLUSTER_SHAPE_2x3x1 = 33,
CUBLASLT_CLUSTER_SHAPE_3x3x1 = 34,
CUBLASLT_CLUSTER_SHAPE_4x3x1 = 35,
CUBLASLT_CLUSTER_SHAPE_5x3x1 = 36,
CUBLASLT_CLUSTER_SHAPE_3x4x1 = 37,
CUBLASLT_CLUSTER_SHAPE_1x5x1 = 38,
CUBLASLT_CLUSTER_SHAPE_2x5x1 = 39,
CUBLASLT_CLUSTER_SHAPE_3x5x1 = 40,
CUBLASLT_CLUSTER_SHAPE_1x6x1 = 41,
CUBLASLT_CLUSTER_SHAPE_2x6x1 = 42,
CUBLASLT_CLUSTER_SHAPE_1x7x1 = 43,
CUBLASLT_CLUSTER_SHAPE_2x7x1 = 44,
CUBLASLT_CLUSTER_SHAPE_1x9x1 = 45,
CUBLASLT_CLUSTER_SHAPE_1x10x1 = 46,
CUBLASLT_CLUSTER_SHAPE_1x11x1 = 47,
CUBLASLT_CLUSTER_SHAPE_1x12x1 = 48,
CUBLASLT_CLUSTER_SHAPE_1x13x1 = 49,
CUBLASLT_CLUSTER_SHAPE_1x14x1 = 50,
CUBLASLT_CLUSTER_SHAPE_1x15x1 = 51,
CUBLASLT_CLUSTER_SHAPE_END
} cublasLtClusterShape_t;
/** Inner size of the kernel
*
* Represents various aspects of internal kernel design, that don't impact CUDA grid size but may have other more subtle
* effects.
*
*/
typedef enum {
CUBLASLT_MATMUL_INNER_SHAPE_UNDEFINED = 0,
CUBLASLT_MATMUL_INNER_SHAPE_MMA884 = 1,
CUBLASLT_MATMUL_INNER_SHAPE_MMA1684 = 2,
CUBLASLT_MATMUL_INNER_SHAPE_MMA1688 = 3,
CUBLASLT_MATMUL_INNER_SHAPE_MMA16816 = 4,
CUBLASLT_MATMUL_INNER_SHAPE_END
} cublasLtMatmulInnerShape_t;
/** Scaling mode for per-matrix scaling */
typedef enum {
/** Scaling factors are single precision scalars applied to the whole tensor */
CUBLASLT_MATMUL_MATRIX_SCALE_SCALAR_32F = 0,
/** Scaling factors are tensors that contain a dedicated scaling factor stored as an 8-bit CUDA_R_8F_UE4M3 value for
each 16-element block in the innermost dimension of the corresponding data tensor */
CUBLASLT_MATMUL_MATRIX_SCALE_VEC16_UE4M3 = 1,
/** Same as above, except that scaling factor tensor elements have type CUDA_R_8F_UE8M0 and the block size is 32
elements*/
CUBLASLT_MATMUL_MATRIX_SCALE_VEC32_UE8M0 = 2,
CUBLASLT_MATMUL_MATRIX_SCALE_END
} cublasLtMatmulMatrixScale_t;
/** Pointer mode to use for alpha/beta */
typedef enum {
/** matches CUBLAS_POINTER_MODE_HOST, pointer targets a single value host memory */
CUBLASLT_POINTER_MODE_HOST = CUBLAS_POINTER_MODE_HOST,
/** matches CUBLAS_POINTER_MODE_DEVICE, pointer targets a single value device memory */
CUBLASLT_POINTER_MODE_DEVICE = CUBLAS_POINTER_MODE_DEVICE,
/** pointer targets an array in device memory */
CUBLASLT_POINTER_MODE_DEVICE_VECTOR = 2,
/** alpha pointer targets an array in device memory, beta is zero. Note:
CUBLASLT_MATMUL_DESC_ALPHA_VECTOR_BATCH_STRIDE is not supported, must be 0. */
CUBLASLT_POINTER_MODE_ALPHA_DEVICE_VECTOR_BETA_ZERO = 3,
/** alpha pointer targets an array in device memory, beta is a single value in host memory. */
CUBLASLT_POINTER_MODE_ALPHA_DEVICE_VECTOR_BETA_HOST = 4,
} cublasLtPointerMode_t;
/** Mask to define pointer mode capability */
typedef enum {
/** see CUBLASLT_POINTER_MODE_HOST */
CUBLASLT_POINTER_MODE_MASK_HOST = 1,
/** see CUBLASLT_POINTER_MODE_DEVICE */
CUBLASLT_POINTER_MODE_MASK_DEVICE = 2,
/** see CUBLASLT_POINTER_MODE_DEVICE_VECTOR */
CUBLASLT_POINTER_MODE_MASK_DEVICE_VECTOR = 4,
/** see CUBLASLT_POINTER_MODE_ALPHA_DEVICE_VECTOR_BETA_ZERO */
CUBLASLT_POINTER_MODE_MASK_ALPHA_DEVICE_VECTOR_BETA_ZERO = 8,
/** see CUBLASLT_POINTER_MODE_ALPHA_DEVICE_VECTOR_BETA_HOST */
CUBLASLT_POINTER_MODE_MASK_ALPHA_DEVICE_VECTOR_BETA_HOST = 16,
} cublasLtPointerModeMask_t;
/** Implementation details that may affect numerical behavior of algorithms. */
#define CUBLASLT_NUMERICAL_IMPL_FLAGS_FMA (0x01ull << 0)
#define CUBLASLT_NUMERICAL_IMPL_FLAGS_HMMA (0x02ull << 0)
#define CUBLASLT_NUMERICAL_IMPL_FLAGS_IMMA (0x04ull << 0)
#define CUBLASLT_NUMERICAL_IMPL_FLAGS_DMMA (0x08ull << 0)
#define CUBLASLT_NUMERICAL_IMPL_FLAGS_TENSOR_OP_MASK (0xfeull << 0)
#define CUBLASLT_NUMERICAL_IMPL_FLAGS_OP_TYPE_MASK (0xffull << 0)
#define CUBLASLT_NUMERICAL_IMPL_FLAGS_ACCUMULATOR_16F (0x01ull << 8)
#define CUBLASLT_NUMERICAL_IMPL_FLAGS_ACCUMULATOR_32F (0x02ull << 8)
#define CUBLASLT_NUMERICAL_IMPL_FLAGS_ACCUMULATOR_64F (0x04ull << 8)
#define CUBLASLT_NUMERICAL_IMPL_FLAGS_ACCUMULATOR_32I (0x08ull << 8)
#define CUBLASLT_NUMERICAL_IMPL_FLAGS_ACCUMULATOR_TYPE_MASK (0xffull << 8)
#define CUBLASLT_NUMERICAL_IMPL_FLAGS_INPUT_16F (0x01ull << 16)
#define CUBLASLT_NUMERICAL_IMPL_FLAGS_INPUT_16BF (0x02ull << 16)
#define CUBLASLT_NUMERICAL_IMPL_FLAGS_INPUT_TF32 (0x04ull << 16)
#define CUBLASLT_NUMERICAL_IMPL_FLAGS_INPUT_32F (0x08ull << 16)
#define CUBLASLT_NUMERICAL_IMPL_FLAGS_INPUT_64F (0x10ull << 16)
#define CUBLASLT_NUMERICAL_IMPL_FLAGS_INPUT_8I (0x20ull << 16)
#define CUBLASLT_NUMERICAL_IMPL_FLAGS_INPUT_8F_E4M3 (0x40ull << 16)
#define CUBLASLT_NUMERICAL_IMPL_FLAGS_INPUT_8F_E5M2 (0x80ull << 16)
#define CUBLASLT_NUMERICAL_IMPL_FLAGS_OP_INPUT_TYPE_MASK (0xffull << 16)
#define CUBLASLT_NUMERICAL_IMPL_FLAGS_GAUSSIAN (0x01ull << 32)
typedef uint64_t cublasLtNumericalImplFlags_t;
/** Execute matrix multiplication (D = alpha * op(A) * op(B) + beta * C).
*
* \retval CUBLAS_STATUS_NOT_INITIALIZED if cuBLASLt handle has not been initialized
* \retval CUBLAS_STATUS_INVALID_VALUE if parameters are in conflict or in an impossible configuration; e.g.
* when workspaceSizeInBytes is less than workspace required by configured
* algo
* \retval CUBLAS_STATUS_NOT_SUPPORTED if current implementation on selected device doesn't support configured
* operation
* \retval CUBLAS_STATUS_ARCH_MISMATCH if configured operation cannot be run using selected device
* \retval CUBLAS_STATUS_EXECUTION_FAILED if cuda reported execution error from the device
* \retval CUBLAS_STATUS_SUCCESS if the operation completed successfully
*/
cublasStatus_t CUBLASWINAPI cublasLtMatmul(cublasLtHandle_t lightHandle,
cublasLtMatmulDesc_t computeDesc,
const void* alpha, /* host or device pointer */
const void* A,
cublasLtMatrixLayout_t Adesc,
const void* B,
cublasLtMatrixLayout_t Bdesc,
const void* beta, /* host or device pointer */
const void* C,
cublasLtMatrixLayout_t Cdesc,
void* D,
cublasLtMatrixLayout_t Ddesc,
const cublasLtMatmulAlgo_t* algo,
void* workspace,
size_t workspaceSizeInBytes,
cudaStream_t stream);
/** Matrix layout conversion helper (C = alpha * op(A) + beta * op(B))
*
* Can be used to change memory order of data or to scale and shift the values.
*
* \retval CUBLAS_STATUS_NOT_INITIALIZED if cuBLASLt handle has not been initialized
* \retval CUBLAS_STATUS_INVALID_VALUE if parameters are in conflict or in an impossible configuration; e.g.
* when A is not NULL, but Adesc is NULL
* \retval CUBLAS_STATUS_NOT_SUPPORTED if current implementation on selected device doesn't support configured
* operation
* \retval CUBLAS_STATUS_ARCH_MISMATCH if configured operation cannot be run using selected device
* \retval CUBLAS_STATUS_EXECUTION_FAILED if cuda reported execution error from the device
* \retval CUBLAS_STATUS_SUCCESS if the operation completed successfully
*/
cublasStatus_t CUBLASWINAPI cublasLtMatrixTransform(cublasLtHandle_t lightHandle,
cublasLtMatrixTransformDesc_t transformDesc,
const void* alpha, /* host or device pointer */
const void* A,
cublasLtMatrixLayout_t Adesc,
const void* beta, /* host or device pointer */
const void* B,
cublasLtMatrixLayout_t Bdesc,
void* C,
cublasLtMatrixLayout_t Cdesc,
cudaStream_t stream);
/* ---------------------------------------------------------------------------------------*/
/* Helper functions for cublasLtMatrixLayout_t */
/* ---------------------------------------------------------------------------------------*/
/** Enum for data ordering */
typedef enum {
/** Column-major
*
* Leading dimension is the stride (in elements) to the beginning of next column in memory.
*/
CUBLASLT_ORDER_COL = 0,
/** Row major
*
* Leading dimension is the stride (in elements) to the beginning of next row in memory.
*/
CUBLASLT_ORDER_ROW = 1,
/** Column-major ordered tiles of 32 columns.
*
* Leading dimension is the stride (in elements) to the beginning of next group of 32-columns. E.g. if matrix has 33
* columns and 2 rows, ld must be at least (32) * 2 = 64.
*/
CUBLASLT_ORDER_COL32 = 2,
/** Column-major ordered tiles of composite tiles with total 32 columns and 8 rows, tile composed of interleaved
* inner tiles of 4 columns within 4 even or odd rows in an alternating pattern.
*
* Leading dimension is the stride (in elements) to the beginning of the first 32 column x 8 row tile for the next
* 32-wide group of columns. E.g. if matrix has 33 columns and 1 row, ld must be at least (32 * 8) * 1 = 256.
*/
CUBLASLT_ORDER_COL4_4R2_8C = 3,
/** Column-major ordered tiles of composite tiles with total 32 columns ands 32 rows.
* Element offset within the tile is calculated as (((row%8)/2*4+row/8)*2+row%2)*32+col.
*
* Leading dimension is the stride (in elements) to the beginning of the first 32 column x 32 row tile for the next
* 32-wide group of columns. E.g. if matrix has 33 columns and 1 row, ld must be at least (32*32)*1 = 1024.
*/
CUBLASLT_ORDER_COL32_2R_4R4 = 4,
} cublasLtOrder_t;
/** Attributes of memory layout */
typedef enum {
/** Data type, see cudaDataType.
*
* uint32_t
*/
CUBLASLT_MATRIX_LAYOUT_TYPE = 0,
/** Memory order of the data, see cublasLtOrder_t.
*
* int32_t, default: CUBLASLT_ORDER_COL
*/
CUBLASLT_MATRIX_LAYOUT_ORDER = 1,
/** Number of rows.
*
* Usually only values that can be expressed as int32_t are supported.
*
* uint64_t
*/
CUBLASLT_MATRIX_LAYOUT_ROWS = 2,
/** Number of columns.
*
* Usually only values that can be expressed as int32_t are supported.
*
* uint64_t
*/
CUBLASLT_MATRIX_LAYOUT_COLS = 3,
/** Matrix leading dimension.
*
* For CUBLASLT_ORDER_COL this is stride (in elements) of matrix column, for more details and documentation for
* other memory orders see documentation for cublasLtOrder_t values.
*
* Currently only non-negative values are supported, must be large enough so that matrix memory locations are not
* overlapping (e.g. greater or equal to CUBLASLT_MATRIX_LAYOUT_ROWS in case of CUBLASLT_ORDER_COL).
*
* int64_t;
*/
CUBLASLT_MATRIX_LAYOUT_LD = 4,
/** Number of matmul operations to perform in the batch.
*
* See also CUBLASLT_ALGO_CAP_STRIDED_BATCH_SUPPORT
*
* int32_t, default: 1
*/
CUBLASLT_MATRIX_LAYOUT_BATCH_COUNT = 5,
/** Stride (in elements) to the next matrix for strided batch operation.
*
* When matrix type is planar-complex (CUBLASLT_MATRIX_LAYOUT_PLANE_OFFSET != 0), batch stride
* is interpreted by cublasLtMatmul() in number of real valued sub-elements. E.g. for data of type CUDA_C_16F,
* offset of 1024B is encoded as a stride of value 512 (since each element of the real and imaginary matrices
* is a 2B (16bit) floating point type).
*
* NOTE: A bug in cublasLtMatrixTransform() causes it to interpret the batch stride for a planar-complex matrix
* as if it was specified in number of complex elements. Therefore an offset of 1024B must be encoded as stride
* value 256 when calling cublasLtMatrixTransform() (each complex element is 4B with real and imaginary values 2B
* each). This behavior is expected to be corrected in the next major cuBLAS version.
*
* int64_t, default: 0
*/
CUBLASLT_MATRIX_LAYOUT_STRIDED_BATCH_OFFSET = 6,
/** Stride (in bytes) to the imaginary plane for planar complex layout.
*
* int64_t, default: 0 - 0 means that layout is regular (real and imaginary parts of complex numbers are interleaved
* in memory in each element)
*/
CUBLASLT_MATRIX_LAYOUT_PLANE_OFFSET = 7,
} cublasLtMatrixLayoutAttribute_t;
/** Internal. Do not use directly.
*/
cublasStatus_t CUBLASWINAPI cublasLtMatrixLayoutInit_internal( //
cublasLtMatrixLayout_t matLayout,
size_t size,
cudaDataType type,
uint64_t rows,
uint64_t cols,
int64_t ld);
/** Initialize matrix layout descriptor in pre-allocated space.
*
* \retval CUBLAS_STATUS_ALLOC_FAILED if size of the pre-allocated space is insufficient
* \retval CUBLAS_STATUS_SUCCESS if desciptor was created successfully
*/
static inline cublasStatus_t cublasLtMatrixLayoutInit(
cublasLtMatrixLayout_t matLayout, cudaDataType type, uint64_t rows, uint64_t cols, int64_t ld) {
return cublasLtMatrixLayoutInit_internal(matLayout, sizeof(*matLayout), type, rows, cols, ld);
}
/** Create new matrix layout descriptor.
*
* \retval CUBLAS_STATUS_ALLOC_FAILED if memory could not be allocated
* \retval CUBLAS_STATUS_SUCCESS if desciptor was created successfully
*/
cublasStatus_t CUBLASWINAPI cublasLtMatrixLayoutCreate( //
cublasLtMatrixLayout_t* matLayout,
cudaDataType type,
uint64_t rows,
uint64_t cols,
int64_t ld);
/** Destroy matrix layout descriptor.
*
* \retval CUBLAS_STATUS_SUCCESS if operation was successful
*/
cublasStatus_t CUBLASWINAPI cublasLtMatrixLayoutDestroy(cublasLtMatrixLayout_t matLayout);
/** Set matrix layout descriptor attribute.
*
* \param[in] matLayout The descriptor
* \param[in] attr The attribute
* \param[in] buf memory address containing the new value
* \param[in] sizeInBytes size of buf buffer for verification (in bytes)
*
* \retval CUBLAS_STATUS_INVALID_VALUE if buf is NULL or sizeInBytes doesn't match size of internal storage for
* selected attribute
* \retval CUBLAS_STATUS_SUCCESS if attribute was set successfully
*/
cublasStatus_t CUBLASWINAPI cublasLtMatrixLayoutSetAttribute( //
cublasLtMatrixLayout_t matLayout,
cublasLtMatrixLayoutAttribute_t attr,
const void* buf,
size_t sizeInBytes);
/** Get matrix layout descriptor attribute.
*
* \param[in] matLayout The descriptor
* \param[in] attr The attribute
* \param[out] buf memory address containing the new value
* \param[in] sizeInBytes size of buf buffer for verification (in bytes)
* \param[out] sizeWritten only valid when return value is CUBLAS_STATUS_SUCCESS. If sizeInBytes is non-zero: number of
* bytes actually written, if sizeInBytes is 0: number of bytes needed to write full contents
*
* \retval CUBLAS_STATUS_INVALID_VALUE if sizeInBytes is 0 and sizeWritten is NULL, or if sizeInBytes is non-zero
* and buf is NULL or sizeInBytes doesn't match size of internal storage for
* selected attribute
* \retval CUBLAS_STATUS_SUCCESS if attribute's value was successfully written to user memory
*/
cublasStatus_t CUBLASWINAPI cublasLtMatrixLayoutGetAttribute( //
cublasLtMatrixLayout_t matLayout,
cublasLtMatrixLayoutAttribute_t attr,
void* buf,
size_t sizeInBytes,
size_t* sizeWritten);
/* ---------------------------------------------------------------------------------------*/
/* Helper functions for cublasLtMatmulDesc_t */
/* ---------------------------------------------------------------------------------------*/
/** Matmul descriptor attributes to define details of the operation. */
typedef enum {
/** Compute type, see cudaDataType. Defines data type used for multiply and accumulate operations and the
* accumulator during matrix multiplication.
*
* int32_t
*/
CUBLASLT_MATMUL_DESC_COMPUTE_TYPE = 0,
/** Scale type, see cudaDataType. Defines data type of alpha and beta. Accumulator and value from matrix C are
* typically converted to scale type before final scaling. Value is then converted from scale type to type of matrix
* D before being stored in memory.
*
* int32_t, default: same as CUBLASLT_MATMUL_DESC_COMPUTE_TYPE
*/
CUBLASLT_MATMUL_DESC_SCALE_TYPE = 1,
/** Pointer mode of alpha and beta, see cublasLtPointerMode_t. When CUBLASLT_POINTER_MODE_DEVICE_VECTOR is in use,
* alpha/beta vector lenghts must match number of output matrix rows.
*
* int32_t, default: CUBLASLT_POINTER_MODE_HOST
*/
CUBLASLT_MATMUL_DESC_POINTER_MODE = 2,
/** Transform of matrix A, see cublasOperation_t.
*
* int32_t, default: CUBLAS_OP_N
*/
CUBLASLT_MATMUL_DESC_TRANSA = 3,
/** Transform of matrix B, see cublasOperation_t.
*
* int32_t, default: CUBLAS_OP_N
*/
CUBLASLT_MATMUL_DESC_TRANSB = 4,
/** Transform of matrix C, see cublasOperation_t.
*
* Currently only CUBLAS_OP_N is supported.
*
* int32_t, default: CUBLAS_OP_N
*/
CUBLASLT_MATMUL_DESC_TRANSC = 5,
/** Matrix fill mode, see cublasFillMode_t.
*
* int32_t, default: CUBLAS_FILL_MODE_FULL
*/
CUBLASLT_MATMUL_DESC_FILL_MODE = 6,
/** Epilogue function, see cublasLtEpilogue_t.
*
* uint32_t, default: CUBLASLT_EPILOGUE_DEFAULT
*/
CUBLASLT_MATMUL_DESC_EPILOGUE = 7,
/** Bias or bias gradient vector pointer in the device memory.
*
* Bias case. See CUBLASLT_EPILOGUE_BIAS.
* For bias data type see CUBLASLT_MATMUL_DESC_BIAS_DATA_TYPE.
*
* Bias vector length must match matrix D rows count.
*
* Bias gradient case. See CUBLASLT_EPILOGUE_DRELU_BGRAD and CUBLASLT_EPILOGUE_DGELU_BGRAD.
* Bias gradient vector elements are the same type as the output elements
* (Ctype) with the exception of IMMA kernels (see above).
*
* Routines that don't dereference this pointer, like cublasLtMatmulAlgoGetHeuristic()
* depend on its value to determine expected pointer alignment.
*
* Bias case: const void *, default: NULL
* Bias gradient case: void *, default: NULL
*/
CUBLASLT_MATMUL_DESC_BIAS_POINTER = 8,
/** Batch stride for bias or bias gradient vector.
*
* Used together with CUBLASLT_MATMUL_DESC_BIAS_POINTER when matrix D's CUBLASLT_MATRIX_LAYOUT_BATCH_COUNT > 1.
*
* int64_t, default: 0
*/
CUBLASLT_MATMUL_DESC_BIAS_BATCH_STRIDE = 10,
/** Pointer for epilogue auxiliary buffer.
*
* - Output vector for ReLu bit-mask in forward pass when CUBLASLT_EPILOGUE_RELU_AUX
* or CUBLASLT_EPILOGUE_RELU_AUX_BIAS epilogue is used.
* - Input vector for ReLu bit-mask in backward pass when
* CUBLASLT_EPILOGUE_DRELU_BGRAD epilogue is used.
*
* - Output of GELU input matrix in forward pass when
* CUBLASLT_EPILOGUE_GELU_AUX_BIAS epilogue is used.
* - Input of GELU input matrix for backward pass when
* CUBLASLT_EPILOGUE_DGELU_BGRAD epilogue is used.
*
* For aux data type see CUBLASLT_MATMUL_DESC_EPILOGUE_AUX_DATA_TYPE.
*
* Routines that don't dereference this pointer, like cublasLtMatmulAlgoGetHeuristic()
* depend on its value to determine expected pointer alignment.
*
* Requires setting CUBLASLT_MATMUL_DESC_EPILOGUE_AUX_LD attribute.
*
* Forward pass: void *, default: NULL
* Backward pass: const void *, default: NULL
*/
CUBLASLT_MATMUL_DESC_EPILOGUE_AUX_POINTER = 11,
/** Leading dimension for epilogue auxiliary buffer.
*
* - ReLu bit-mask matrix leading dimension in elements (i.e. bits)
* when CUBLASLT_EPILOGUE_RELU_AUX, CUBLASLT_EPILOGUE_RELU_AUX_BIAS or CUBLASLT_EPILOGUE_DRELU_BGRAD epilogue is
* used. Must be divisible by 128 and be no less than the number of rows in the output matrix.
*
* - GELU input matrix leading dimension in elements
* when CUBLASLT_EPILOGUE_GELU_AUX_BIAS or CUBLASLT_EPILOGUE_DGELU_BGRAD epilogue used.
* Must be divisible by 8 and be no less than the number of rows in the output matrix.
*
* int64_t, default: 0
*/
CUBLASLT_MATMUL_DESC_EPILOGUE_AUX_LD = 12,
/** Batch stride for epilogue auxiliary buffer.
*
* - ReLu bit-mask matrix batch stride in elements (i.e. bits)
* when CUBLASLT_EPILOGUE_RELU_AUX, CUBLASLT_EPILOGUE_RELU_AUX_BIAS or CUBLASLT_EPILOGUE_DRELU_BGRAD epilogue is
* used. Must be divisible by 128.
*
* - GELU input matrix batch stride in elements
* when CUBLASLT_EPILOGUE_GELU_AUX_BIAS or CUBLASLT_EPILOGUE_DGELU_BGRAD epilogue used.
* Must be divisible by 8.
*
* int64_t, default: 0
*/
CUBLASLT_MATMUL_DESC_EPILOGUE_AUX_BATCH_STRIDE = 13,
/** Batch stride for alpha vector.
*
* Used together with CUBLASLT_POINTER_MODE_ALPHA_DEVICE_VECTOR_BETA_HOST when matrix D's
* CUBLASLT_MATRIX_LAYOUT_BATCH_COUNT > 1. If CUBLASLT_POINTER_MODE_ALPHA_DEVICE_VECTOR_BETA_ZERO is set then
* CUBLASLT_MATMUL_DESC_ALPHA_VECTOR_BATCH_STRIDE must be set to 0 as this mode doesnt supported batched alpha vector.
*
* int64_t, default: 0
*/
CUBLASLT_MATMUL_DESC_ALPHA_VECTOR_BATCH_STRIDE = 14,
/** Number of SMs to target for parallel execution. Optimizes heuristics for execution on a different number of SMs
* when user expects a concurrent stream to be using some of the device resources.
*
* int32_t, default: 0 - use the number reported by the device.
*/
CUBLASLT_MATMUL_DESC_SM_COUNT_TARGET = 15,
/** Device pointer to the scale factor value that converts data in matrix A to the compute data type range.
*
* The scaling factor value must have the same type as the compute type.
*
* If not specified, or set to NULL, the scaling factor is assumed to be 1.
*
* If set for an unsupported matrix data, scale, and compute type combination, calling cublasLtMatmul()
* will return CUBLAS_INVALID_VALUE.
*
* const void *, default: NULL
*/
CUBLASLT_MATMUL_DESC_A_SCALE_POINTER = 17,
/** Device pointer to the scale factor value to convert data in matrix B to compute data type range.
*
* The scaling factor value must have the same type as the compute type.
*
* If not specified, or set to NULL, the scaling factor is assumed to be 1.
*
* If set for an unsupported matrix data, scale, and compute type combination, calling cublasLtMatmul()
* will return CUBLAS_INVALID_VALUE.
*
* const void *, default: NULL
*/
CUBLASLT_MATMUL_DESC_B_SCALE_POINTER = 18,
/** Device pointer to the scale factor value to convert data in matrix C to compute data type range.
*
* The scaling factor value must have the same type as the compute type.
*
* If not specified, or set to NULL, the scaling factor is assumed to be 1.
*
* If set for an unsupported matrix data, scale, and compute type combination, calling cublasLtMatmul()
* will return CUBLAS_INVALID_VALUE.
*
* const void *, default: NULL
*/
CUBLASLT_MATMUL_DESC_C_SCALE_POINTER = 19,
/** Device pointer to the scale factor value to convert data in matrix D to compute data type range.
*
* The scaling factor value must have the same type as the compute type.
*
* If not specified, or set to NULL, the scaling factor is assumed to be 1.
*
* If set for an unsupported matrix data, scale, and compute type combination, calling cublasLtMatmul()
* will return CUBLAS_INVALID_VALUE.
*
* const void *, default: NULL
*/
CUBLASLT_MATMUL_DESC_D_SCALE_POINTER = 20,
/** Device pointer to the memory location that on completion will be set to the maximum of absolute values in the
* output matrix.
*
* The computed value has the same type as the compute type.
*
* If not specified or set to NULL, the maximum absolute value is not computed. If set for an unsupported matrix
* data, scale, and compute type combination, calling cublasLtMatmul() will return CUBLAS_INVALID_VALUE.
*
* void *, default: NULL
*/
CUBLASLT_MATMUL_DESC_AMAX_D_POINTER = 21,
/** Type of the data to be stored to the memory pointed to by CUBLASLT_MATMUL_DESC_EPILOGUE_AUX_POINTER.
*
* If unset, the data type defaults to the type of elements of the output matrix with some exceptions, see details
* below.
*
* ReLu uses a bit-mask.
*
* GELU input matrix elements type is the same as the type of elements of
* the output matrix with some exceptions, see details below.
*
* For fp8 kernels with output type CUDA_R_8F_E4M3 the aux data type can be CUDA_R_8F_E4M3 or CUDA_R_16F with some
* restrictions. See https://docs.nvidia.com/cuda/cublas/index.html#cublasLtMatmulDescAttributes_t for more details.
*
* If set for an unsupported matrix data, scale, and compute type combination, calling cublasLtMatmul()
* will return CUBLAS_INVALID_VALUE.
*
* int32_t based on cudaDataType, default: -1
*/
CUBLASLT_MATMUL_DESC_EPILOGUE_AUX_DATA_TYPE = 22,
/** Device pointer to the scaling factor value to convert results from compute type data range to storage
* data range in the auxiliary matrix that is set via CUBLASLT_MATMUL_DESC_EPILOGUE_AUX_POINTER.
*
* The scaling factor value must have the same type as the compute type.
*
* If not specified, or set to NULL, the scaling factor is assumed to be 1. If set for an unsupported matrix data,
* scale, and compute type combination, calling cublasLtMatmul() will return CUBLAS_INVALID_VALUE.
*
* void *, default: NULL
*/
CUBLASLT_MATMUL_DESC_EPILOGUE_AUX_SCALE_POINTER = 23,
/** Device pointer to the memory location that on completion will be set to the maximum of absolute values in the
* buffer that is set via CUBLASLT_MATMUL_DESC_EPILOGUE_AUX_POINTER.
*
* The computed value has the same type as the compute type.
*
* If not specified or set to NULL, the maximum absolute value is not computed. If set for an unsupported matrix
* data, scale, and compute type combination, calling cublasLtMatmul() will return CUBLAS_INVALID_VALUE.
*
* void *, default: NULL
*/
CUBLASLT_MATMUL_DESC_EPILOGUE_AUX_AMAX_POINTER = 24,
/** Flag for managing fp8 fast accumulation mode.
* When enabled, problem execution might be faster but at the cost of lower accuracy because intermediate results
* will not periodically be promoted to a higher precision.
*
* int8_t, default: 0 - fast accumulation mode is disabled.
*/
CUBLASLT_MATMUL_DESC_FAST_ACCUM = 25,
/** Type of bias or bias gradient vector in the device memory.
*
* Bias case: see CUBLASLT_EPILOGUE_BIAS.
*
* Bias vector elements are the same type as the elements of output matrix (Dtype) with the following exceptions:
* - IMMA kernels with computeType=CUDA_R_32I and Ctype=CUDA_R_8I where the bias vector elements
* are the same type as alpha, beta (CUBLASLT_MATMUL_DESC_SCALE_TYPE=CUDA_R_32F)
* - fp8 kernels with an output type of CUDA_R_32F, CUDA_R_8F_E4M3 or CUDA_R_8F_E5M2, See
* https://docs.nvidia.com/cuda/cublas/index.html#cublasLtMatmul for details.
*
* int32_t based on cudaDataType, default: -1
*/
CUBLASLT_MATMUL_DESC_BIAS_DATA_TYPE = 26,
/** EXPERIMENTAL, DEPRECATED: Number of atomic synchronization chunks in the row dimension of the output matrix D.
*
* int32_t, default 0 (atomic synchronization disabled)
*/
CUBLASLT_MATMUL_DESC_ATOMIC_SYNC_NUM_CHUNKS_D_ROWS = 27,
/** EXPERIMENTAL, DEPRECATED: Number of atomic synchronization chunks in the column dimension of the output matrix D.
*
* int32_t, default 0 (atomic synchronization disabled)
*/
CUBLASLT_MATMUL_DESC_ATOMIC_SYNC_NUM_CHUNKS_D_COLS = 28,
/** EXPERIMENTAL: Pointer to a device array of input atomic counters consumed by a matmul.
*
* int32_t *, default: NULL
* */
CUBLASLT_MATMUL_DESC_ATOMIC_SYNC_IN_COUNTERS_POINTER = 29,
/** EXPERIMENTAL: Pointer to a device array of output atomic counters produced by a matmul.
*
* int32_t *, default: NULL
* */
CUBLASLT_MATMUL_DESC_ATOMIC_SYNC_OUT_COUNTERS_POINTER = 30,
/** Scaling mode that defines how the matrix scaling factor for matrix A is interpreted
*
* int32_t, default: 0 */
CUBLASLT_MATMUL_DESC_A_SCALE_MODE = 31,
/** Scaling mode that defines how the matrix scaling factor for matrix B is interpreted
*
* int32_t, default: 0 */
CUBLASLT_MATMUL_DESC_B_SCALE_MODE = 32,
/** Scaling mode that defines how the matrix scaling factor for matrix C is interpreted
*
* int32_t, default: 0 */
CUBLASLT_MATMUL_DESC_C_SCALE_MODE = 33,
/** Scaling mode that defines how the matrix scaling factor for matrix D is interpreted
*
* int32_t, default: 0 */
CUBLASLT_MATMUL_DESC_D_SCALE_MODE = 34,
/** Scaling mode that defines how the matrix scaling factor for the auxiliary matrix is interpreted
*
* int32_t, default: 0 */
CUBLASLT_MATMUL_DESC_EPILOGUE_AUX_SCALE_MODE = 35,
/** Device pointer to the scale factors that are used to convert data in matrix D to the compute data type range.
*
* The scaling factor value type is defined by the scaling mode (see CUBLASLT_MATMUL_DESC_D_OUT_SCALE_MODE)
*
* If set for an unsupported matrix data, scale, scale mode, and compute type combination, calling cublasLtMatmul()
* will return CUBLAS_INVALID_VALUE.
*
* void *, default: NULL
*/
CUBLASLT_MATMUL_DESC_D_OUT_SCALE_POINTER = 36,
/** Scaling mode that defines how the output matrix scaling factor for matrix D is interpreted
*
* int32_t, default: 0 */
CUBLASLT_MATMUL_DESC_D_OUT_SCALE_MODE = 37,
} cublasLtMatmulDescAttributes_t;
/** Internal. Do not use directly.
*/
cublasStatus_t CUBLASWINAPI cublasLtMatmulDescInit_internal( //
cublasLtMatmulDesc_t matmulDesc,
size_t size,
cublasComputeType_t computeType,
cudaDataType_t scaleType);
/** Initialize matmul operation descriptor in pre-allocated space.
*
* \retval CUBLAS_STATUS_ALLOC_FAILED if size of the pre-allocated space is insufficient
* \retval CUBLAS_STATUS_SUCCESS if desciptor was initialized successfully
*/
static inline cublasStatus_t cublasLtMatmulDescInit( //
cublasLtMatmulDesc_t matmulDesc,
cublasComputeType_t computeType,
cudaDataType_t scaleType) {
return cublasLtMatmulDescInit_internal(matmulDesc, sizeof(*matmulDesc), computeType, scaleType);
}
/** Create new matmul operation descriptor.
*
* \retval CUBLAS_STATUS_ALLOC_FAILED if memory could not be allocated
* \retval CUBLAS_STATUS_SUCCESS if desciptor was created successfully
*/
cublasStatus_t CUBLASWINAPI cublasLtMatmulDescCreate(cublasLtMatmulDesc_t* matmulDesc,
cublasComputeType_t computeType,
cudaDataType_t scaleType);
/** Destroy matmul operation descriptor.
*
* \retval CUBLAS_STATUS_SUCCESS if operation was successful
*/
cublasStatus_t CUBLASWINAPI cublasLtMatmulDescDestroy(cublasLtMatmulDesc_t matmulDesc);
/** Set matmul operation descriptor attribute.
*
* \param[in] matmulDesc The descriptor
* \param[in] attr The attribute
* \param[in] buf memory address containing the new value
* \param[in] sizeInBytes size of buf buffer for verification (in bytes)
*
* \retval CUBLAS_STATUS_INVALID_VALUE if buf is NULL or sizeInBytes doesn't match size of internal storage for
* selected attribute
* \retval CUBLAS_STATUS_SUCCESS if attribute was set successfully
*/
cublasStatus_t CUBLASWINAPI cublasLtMatmulDescSetAttribute( //
cublasLtMatmulDesc_t matmulDesc,
cublasLtMatmulDescAttributes_t attr,
const void* buf,
size_t sizeInBytes);
/** Get matmul operation descriptor attribute.
*
* \param[in] matmulDesc The descriptor
* \param[in] attr The attribute
* \param[out] buf memory address containing the new value
* \param[in] sizeInBytes size of buf buffer for verification (in bytes)
* \param[out] sizeWritten only valid when return value is CUBLAS_STATUS_SUCCESS. If sizeInBytes is non-zero: number of
* bytes actually written, if sizeInBytes is 0: number of bytes needed to write full contents
*
* \retval CUBLAS_STATUS_INVALID_VALUE if sizeInBytes is 0 and sizeWritten is NULL, or if sizeInBytes is non-zero
* and buf is NULL or sizeInBytes doesn't match size of internal storage for
* selected attribute
* \retval CUBLAS_STATUS_SUCCESS if attribute's value was successfully written to user memory
*/
cublasStatus_t CUBLASWINAPI cublasLtMatmulDescGetAttribute( //
cublasLtMatmulDesc_t matmulDesc,
cublasLtMatmulDescAttributes_t attr,
void* buf,
size_t sizeInBytes,
size_t* sizeWritten);
/* ---------------------------------------------------------------------------------------*/
/* Helper functions for cublasLtMatrixTransformDesc_t */
/* ---------------------------------------------------------------------------------------*/
/** Matrix transform descriptor attributes to define details of the operation.
*/
typedef enum {
/** Scale type, see cudaDataType. Inputs are converted to scale type for scaling and summation and results are then
* converted to output type to store in memory.
*
* int32_t
*/
CUBLASLT_MATRIX_TRANSFORM_DESC_SCALE_TYPE,
/** Pointer mode of alpha and beta, see cublasLtPointerMode_t.
*
* int32_t, default: CUBLASLT_POINTER_MODE_HOST
*/
CUBLASLT_MATRIX_TRANSFORM_DESC_POINTER_MODE,
/** Transform of matrix A, see cublasOperation_t.
*
* int32_t, default: CUBLAS_OP_N
*/
CUBLASLT_MATRIX_TRANSFORM_DESC_TRANSA,
/** Transform of matrix B, see cublasOperation_t.
*
* int32_t, default: CUBLAS_OP_N
*/
CUBLASLT_MATRIX_TRANSFORM_DESC_TRANSB,
} cublasLtMatrixTransformDescAttributes_t;
/** Internal. Do not use directly.
*/
cublasStatus_t CUBLASWINAPI cublasLtMatrixTransformDescInit_internal(cublasLtMatrixTransformDesc_t transformDesc,
size_t size,
cudaDataType scaleType);
/** Initialize matrix transform operation descriptor in pre-allocated space.
*
* \retval CUBLAS_STATUS_ALLOC_FAILED if size of the pre-allocated space is insufficient
* \retval CUBLAS_STATUS_SUCCESS if desciptor was created successfully
*/
static inline cublasStatus_t cublasLtMatrixTransformDescInit(cublasLtMatrixTransformDesc_t transformDesc,
cudaDataType scaleType) {
return cublasLtMatrixTransformDescInit_internal(transformDesc, sizeof(*transformDesc), scaleType);
}
/** Create new matrix transform operation descriptor.
*
* \retval CUBLAS_STATUS_ALLOC_FAILED if memory could not be allocated
* \retval CUBLAS_STATUS_SUCCESS if desciptor was created successfully
*/
cublasStatus_t CUBLASWINAPI cublasLtMatrixTransformDescCreate(cublasLtMatrixTransformDesc_t* transformDesc,
cudaDataType scaleType);
/** Destroy matrix transform operation descriptor.
*
* \retval CUBLAS_STATUS_SUCCESS if operation was successful
*/
cublasStatus_t CUBLASWINAPI cublasLtMatrixTransformDescDestroy(cublasLtMatrixTransformDesc_t transformDesc);
/** Set matrix transform operation descriptor attribute.
*
* \param[in] transformDesc The descriptor
* \param[in] attr The attribute
* \param[in] buf memory address containing the new value
* \param[in] sizeInBytes size of buf buffer for verification (in bytes)
*
* \retval CUBLAS_STATUS_INVALID_VALUE if buf is NULL or sizeInBytes doesn't match size of internal storage for
* selected attribute
* \retval CUBLAS_STATUS_SUCCESS if attribute was set successfully
*/
cublasStatus_t CUBLASWINAPI cublasLtMatrixTransformDescSetAttribute( //
cublasLtMatrixTransformDesc_t transformDesc,
cublasLtMatrixTransformDescAttributes_t attr,
const void* buf,
size_t sizeInBytes);
/** Get matrix transform operation descriptor attribute.
*
* \param[in] transformDesc The descriptor
* \param[in] attr The attribute
* \param[out] buf memory address containing the new value
* \param[in] sizeInBytes size of buf buffer for verification (in bytes)
* \param[out] sizeWritten only valid when return value is CUBLAS_STATUS_SUCCESS. If sizeInBytes is non-zero: number
* of bytes actually written, if sizeInBytes is 0: number of bytes needed to write full contents
*
* \retval CUBLAS_STATUS_INVALID_VALUE if sizeInBytes is 0 and sizeWritten is NULL, or if sizeInBytes is non-zero
* and buf is NULL or sizeInBytes doesn't match size of internal storage for
* selected attribute
* \retval CUBLAS_STATUS_SUCCESS if attribute's value was successfully written to user memory
*/
cublasStatus_t CUBLASWINAPI cublasLtMatrixTransformDescGetAttribute( //
cublasLtMatrixTransformDesc_t transformDesc,
cublasLtMatrixTransformDescAttributes_t attr,
void* buf,
size_t sizeInBytes,
size_t* sizeWritten);
/** Reduction scheme for portions of the dot-product calculated in parallel (a. k. a. "split - K").
*/
typedef enum {
/** No reduction scheme, dot-product shall be performed in one sequence.
*/
CUBLASLT_REDUCTION_SCHEME_NONE = 0,
/** Reduction is performed "in place" - using the output buffer (and output data type) and counters (in workspace) to
* guarantee the sequentiality.
*/
CUBLASLT_REDUCTION_SCHEME_INPLACE = 1,
/** Intermediate results are stored in compute type in the workspace and reduced in a separate step.
*/
CUBLASLT_REDUCTION_SCHEME_COMPUTE_TYPE = 2,
/** Intermediate results are stored in output type in the workspace and reduced in a separate step.
*/
CUBLASLT_REDUCTION_SCHEME_OUTPUT_TYPE = 4,
CUBLASLT_REDUCTION_SCHEME_MASK = 0x7,
} cublasLtReductionScheme_t;
/** Postprocessing options for the epilogue
*/
typedef enum {
/** No special postprocessing, just scale and quantize results if necessary.
*/
CUBLASLT_EPILOGUE_DEFAULT = 1,
/** ReLu, apply ReLu point-wise transform to the results (x:=max(x, 0)).
*/
CUBLASLT_EPILOGUE_RELU = 2,
/** ReLu, apply ReLu point-wise transform to the results (x:=max(x, 0)).
*
* This epilogue mode produces an extra output, a ReLu bit-mask matrix,
* see CUBLASLT_MATMUL_DESC_EPILOGUE_AUX_POINTER.
*/
CUBLASLT_EPILOGUE_RELU_AUX = (CUBLASLT_EPILOGUE_RELU | 128),
/** Bias, apply (broadcasted) Bias from bias vector. Bias vector length must match matrix D rows, it must be packed
* (stride between vector elements is 1). Bias vector is broadcasted to all columns and added before applying final
* postprocessing.
*/
CUBLASLT_EPILOGUE_BIAS = 4,
/** ReLu and Bias, apply Bias and then ReLu transform
*/
CUBLASLT_EPILOGUE_RELU_BIAS = (CUBLASLT_EPILOGUE_RELU | CUBLASLT_EPILOGUE_BIAS),
/** ReLu and Bias, apply Bias and then ReLu transform
*
* This epilogue mode produces an extra output, a ReLu bit-mask matrix,
* see CUBLASLT_MATMUL_DESC_EPILOGUE_AUX_POINTER.
*/
CUBLASLT_EPILOGUE_RELU_AUX_BIAS = (CUBLASLT_EPILOGUE_RELU_AUX | CUBLASLT_EPILOGUE_BIAS),
/* ReLu gradient. Apply ReLu gradient to matmul output. Store ReLu gradient in the output matrix.
*
* This epilogue mode requires an extra input,
* see CUBLASLT_MATMUL_DESC_EPILOGUE_AUX_POINTER.
*/
CUBLASLT_EPILOGUE_DRELU = 8 | 128,
/* ReLu and Bias gradients. Apply independently ReLu and Bias gradient to
* matmul output. Store ReLu gradient in the output matrix, and Bias gradient
* in the auxiliary output (see CUBLASLT_MATMUL_DESC_BIAS_POINTER).
*
* This epilogue mode requires an extra input,
* see CUBLASLT_MATMUL_DESC_EPILOGUE_AUX_POINTER.
*/
CUBLASLT_EPILOGUE_DRELU_BGRAD = CUBLASLT_EPILOGUE_DRELU | 16,
/** GELU, apply GELU point-wise transform to the results (x:=GELU(x)).
*/
CUBLASLT_EPILOGUE_GELU = 32,
/** GELU, apply GELU point-wise transform to the results (x:=GELU(x)).
*
* This epilogue mode outputs GELU input as a separate matrix (useful for training).
* See CUBLASLT_MATMUL_DESC_EPILOGUE_AUX_POINTER.
*/
CUBLASLT_EPILOGUE_GELU_AUX = (CUBLASLT_EPILOGUE_GELU | 128),
/** GELU and Bias, apply Bias and then GELU transform
*/
CUBLASLT_EPILOGUE_GELU_BIAS = (CUBLASLT_EPILOGUE_GELU | CUBLASLT_EPILOGUE_BIAS),
/** GELU and Bias, apply Bias and then GELU transform
*
* This epilogue mode outputs GELU input as a separate matrix (useful for training).
* See CUBLASLT_MATMUL_DESC_EPILOGUE_AUX_POINTER.
*/
CUBLASLT_EPILOGUE_GELU_AUX_BIAS = (CUBLASLT_EPILOGUE_GELU_AUX | CUBLASLT_EPILOGUE_BIAS),
/* GELU gradient. Apply GELU gradient to matmul output. Store GELU gradient in the output matrix.
*
* This epilogue mode requires an extra input,
* see CUBLASLT_MATMUL_DESC_EPILOGUE_AUX_POINTER.
*/
CUBLASLT_EPILOGUE_DGELU = 64 | 128,
/* GELU and Bias gradients. Apply independently GELU and Bias gradient to
* matmul output. Store GELU gradient in the output matrix, and Bias gradient
* in the auxiliary output (see CUBLASLT_MATMUL_DESC_BIAS_POINTER).
*
* This epilogue mode requires an extra input,
* see CUBLASLT_MATMUL_DESC_EPILOGUE_AUX_POINTER.
*/
CUBLASLT_EPILOGUE_DGELU_BGRAD = CUBLASLT_EPILOGUE_DGELU | 16,
/** Bias gradient based on the input matrix A.
*
* The bias size corresponds to the number of rows of the matrix D.
* The reduction happens over the GEMM's "k" dimension.
*
* Stores Bias gradient in the auxiliary output
* (see CUBLASLT_MATMUL_DESC_BIAS_POINTER).
*/
CUBLASLT_EPILOGUE_BGRADA = 256,
/** Bias gradient based on the input matrix B.
*
* The bias size corresponds to the number of columns of the matrix D.
* The reduction happens over the GEMM's "k" dimension.
*
* Stores Bias gradient in the auxiliary output
* (see CUBLASLT_MATMUL_DESC_BIAS_POINTER).
*/
CUBLASLT_EPILOGUE_BGRADB = 512,
} cublasLtEpilogue_t;
/** Matmul heuristic search mode
*/
typedef enum {
/** ask heuristics for best algo for given usecase
*/
CUBLASLT_SEARCH_BEST_FIT = 0,
/** only try to find best config for preconfigured algo id
*/
CUBLASLT_SEARCH_LIMITED_BY_ALGO_ID = 1,
/** reserved for future use
*/
CUBLASLT_SEARCH_RESERVED_02 = 2,
/** reserved for future use
*/
CUBLASLT_SEARCH_RESERVED_03 = 3,
/** reserved for future use
*/
CUBLASLT_SEARCH_RESERVED_04 = 4,
/** reserved for future use
*/
CUBLASLT_SEARCH_RESERVED_05 = 5,
/** reserved for future use
*/
CUBLASLT_SEARCH_RESERVED_06 = 6,
/** reserved for future use
*/
CUBLASLT_SEARCH_RESERVED_07 = 7,
/** reserved for future use
*/
CUBLASLT_SEARCH_RESERVED_08 = 8,
/** reserved for future use
*/
CUBLASLT_SEARCH_RESERVED_09 = 9,
} cublasLtMatmulSearch_t;
/** Algo search preference to fine tune the heuristic function. */
typedef enum {
/** Search mode, see cublasLtMatmulSearch_t.
*
* uint32_t, default: CUBLASLT_SEARCH_BEST_FIT
*/
CUBLASLT_MATMUL_PREF_SEARCH_MODE = 0,
/** Maximum allowed workspace size in bytes.
*
* uint64_t, default: 0 - no workspace allowed
*/
CUBLASLT_MATMUL_PREF_MAX_WORKSPACE_BYTES = 1,
/** Reduction scheme mask, see cublasLtReductionScheme_t. Filters heuristic result to only include algo configs that
* use one of the required modes.
*
* E.g. mask value of 0x03 will allow only INPLACE and COMPUTE_TYPE reduction schemes.
*
* uint32_t, default: CUBLASLT_REDUCTION_SCHEME_MASK (allows all reduction schemes)
*/
CUBLASLT_MATMUL_PREF_REDUCTION_SCHEME_MASK = 3,
/** Minimum buffer alignment for matrix A (in bytes).
*
* Selecting a smaller value will exclude algorithms that can not work with matrix A that is not as strictly aligned
* as they need.
*
* uint32_t, default: 256
*/
CUBLASLT_MATMUL_PREF_MIN_ALIGNMENT_A_BYTES = 5,
/** Minimum buffer alignment for matrix B (in bytes).
*
* Selecting a smaller value will exclude algorithms that can not work with matrix B that is not as strictly aligned
* as they need.
*
* uint32_t, default: 256
*/
CUBLASLT_MATMUL_PREF_MIN_ALIGNMENT_B_BYTES = 6,
/** Minimum buffer alignment for matrix C (in bytes).
*
* Selecting a smaller value will exclude algorithms that can not work with matrix C that is not as strictly aligned
* as they need.
*
* uint32_t, default: 256
*/
CUBLASLT_MATMUL_PREF_MIN_ALIGNMENT_C_BYTES = 7,
/** Minimum buffer alignment for matrix D (in bytes).
*
* Selecting a smaller value will exclude algorithms that can not work with matrix D that is not as strictly aligned
* as they need.
*
* uint32_t, default: 256
*/
CUBLASLT_MATMUL_PREF_MIN_ALIGNMENT_D_BYTES = 8,
/** Maximum wave count.
*
* See cublasLtMatmulHeuristicResult_t::wavesCount.
*
* Selecting a non-zero value will exclude algorithms that report device utilization higher than specified.
*
* float, default: 0.0f
*/
CUBLASLT_MATMUL_PREF_MAX_WAVES_COUNT = 9,
/** Numerical implementation details mask, see cublasLtNumericalImplFlags_t. Filters heuristic result to only include
* algorithms that use the allowed implementations.
*
* uint64_t, default: uint64_t(-1) (allow everything)
*/
CUBLASLT_MATMUL_PREF_IMPL_MASK = 12,
} cublasLtMatmulPreferenceAttributes_t;
/** Internal. Do not use directly.
*/
cublasStatus_t CUBLASWINAPI cublasLtMatmulPreferenceInit_internal(cublasLtMatmulPreference_t pref, size_t size);
/** Initialize matmul heuristic search preference descriptor in pre-allocated space.
*
* \retval CUBLAS_STATUS_ALLOC_FAILED if size of the pre-allocated space is insufficient
* \retval CUBLAS_STATUS_SUCCESS if desciptor was created successfully
*/
static inline cublasStatus_t cublasLtMatmulPreferenceInit(cublasLtMatmulPreference_t pref) {
return cublasLtMatmulPreferenceInit_internal(pref, sizeof(*pref));
}
/** Create new matmul heuristic search preference descriptor.
*
* \retval CUBLAS_STATUS_ALLOC_FAILED if memory could not be allocated
* \retval CUBLAS_STATUS_SUCCESS if desciptor was created successfully
*/
cublasStatus_t CUBLASWINAPI cublasLtMatmulPreferenceCreate(cublasLtMatmulPreference_t* pref);
/** Destroy matmul heuristic search preference descriptor.
*
* \retval CUBLAS_STATUS_SUCCESS if operation was successful
*/
cublasStatus_t CUBLASWINAPI cublasLtMatmulPreferenceDestroy(cublasLtMatmulPreference_t pref);
/** Set matmul heuristic search preference descriptor attribute.
*
* \param[in] pref The descriptor
* \param[in] attr The attribute
* \param[in] buf memory address containing the new value
* \param[in] sizeInBytes size of buf buffer for verification (in bytes)
*
* \retval CUBLAS_STATUS_INVALID_VALUE if buf is NULL or sizeInBytes doesn't match size of internal storage for
* selected attribute
* \retval CUBLAS_STATUS_SUCCESS if attribute was set successfully
*/
cublasStatus_t CUBLASWINAPI cublasLtMatmulPreferenceSetAttribute( //
cublasLtMatmulPreference_t pref,
cublasLtMatmulPreferenceAttributes_t attr,
const void* buf,
size_t sizeInBytes);
/** Get matmul heuristic search preference descriptor attribute.
*
* \param[in] pref The descriptor
* \param[in] attr The attribute
* \param[out] buf memory address containing the new value
* \param[in] sizeInBytes size of buf buffer for verification (in bytes)
* \param[out] sizeWritten only valid when return value is CUBLAS_STATUS_SUCCESS. If sizeInBytes is non-zero: number of
* bytes actually written, if sizeInBytes is 0: number of bytes needed to write full contents
*
* \retval CUBLAS_STATUS_INVALID_VALUE if sizeInBytes is 0 and sizeWritten is NULL, or if sizeInBytes is non-zero
* and buf is NULL or sizeInBytes doesn't match size of internal storage for
* selected attribute
* \retval CUBLAS_STATUS_SUCCESS if attribute's value was successfully written to user memory
*/
cublasStatus_t CUBLASWINAPI cublasLtMatmulPreferenceGetAttribute( //
cublasLtMatmulPreference_t pref,
cublasLtMatmulPreferenceAttributes_t attr,
void* buf,
size_t sizeInBytes,
size_t* sizeWritten);
/** Results structure used by cublasLtMatmulAlgoGetHeuristic
*
* Holds returned configured algo descriptor and its runtime properties.
*/
typedef struct {
/** Matmul algorithm descriptor.
*
* Must be initialized with cublasLtMatmulAlgoInit() if preferences' CUBLASLT_MATMUL_PERF_SEARCH_MODE is set to
* CUBLASLT_SEARCH_LIMITED_BY_ALGO_ID
*/
cublasLtMatmulAlgo_t algo;
/** Actual size of workspace memory required.
*/
size_t workspaceSize;
/** Result status, other fields are only valid if after call to cublasLtMatmulAlgoGetHeuristic() this member is set to
* CUBLAS_STATUS_SUCCESS.
*/
cublasStatus_t state;
/** Waves count - a device utilization metric.
*
* wavesCount value of 1.0f suggests that when kernel is launched it will fully occupy the GPU.
*/
float wavesCount;
int reserved[4];
} cublasLtMatmulHeuristicResult_t;
/** Query cublasLt heuristic for algorithm appropriate for given use case.
*
* \param[in] lightHandle Pointer to the allocated cuBLASLt handle for the cuBLASLt
* context. See cublasLtHandle_t.
* \param[in] operationDesc Handle to the matrix multiplication descriptor.
* \param[in] Adesc Handle to the layout descriptors for matrix A.
* \param[in] Bdesc Handle to the layout descriptors for matrix B.
* \param[in] Cdesc Handle to the layout descriptors for matrix C.
* \param[in] Ddesc Handle to the layout descriptors for matrix D.
* \param[in] preference Pointer to the structure holding the heuristic search
* preferences descriptor. See cublasLtMatrixLayout_t.
* \param[in] requestedAlgoCount Size of heuristicResultsArray (in elements) and requested
* maximum number of algorithms to return.
* \param[in, out] heuristicResultsArray Output algorithms and associated runtime characteristics,
* ordered in increasing estimated compute time.
* \param[out] returnAlgoCount The number of heuristicResultsArray elements written.
*
* \retval CUBLAS_STATUS_INVALID_VALUE if requestedAlgoCount is less or equal to zero
* \retval CUBLAS_STATUS_NOT_SUPPORTED if no heuristic function available for current configuration
* \retval CUBLAS_STATUS_SUCCESS if query was successful, inspect
* heuristicResultsArray[0 to (returnAlgoCount - 1)].state
* for detail status of results
*/
cublasStatus_t CUBLASWINAPI cublasLtMatmulAlgoGetHeuristic(cublasLtHandle_t lightHandle,
cublasLtMatmulDesc_t operationDesc,
cublasLtMatrixLayout_t Adesc,
cublasLtMatrixLayout_t Bdesc,
cublasLtMatrixLayout_t Cdesc,
cublasLtMatrixLayout_t Ddesc,
cublasLtMatmulPreference_t preference,
int requestedAlgoCount,
cublasLtMatmulHeuristicResult_t heuristicResultsArray[],
int* returnAlgoCount);
/* ---------------------------------------------------------------------------------------*/
/* Lower level API to be able to implement own Heuristic and Find routines */
/* ---------------------------------------------------------------------------------------*/
/** Routine to get all algo IDs that can potentially run
*
* \param[in] int requestedAlgoCount requested number of algos (must be less or equal to size of algoIdsA
* (in elements)) \param[out] algoIdsA array to write algoIds to \param[out] returnAlgoCount number of algoIds
* actually written
*
* \retval CUBLAS_STATUS_INVALID_VALUE if requestedAlgoCount is less or equal to zero
* \retval CUBLAS_STATUS_SUCCESS if query was successful, inspect returnAlgoCount to get actual number of IDs
* available
*/
cublasStatus_t CUBLASWINAPI cublasLtMatmulAlgoGetIds(cublasLtHandle_t lightHandle,
cublasComputeType_t computeType,
cudaDataType_t scaleType,
cudaDataType_t Atype,
cudaDataType_t Btype,
cudaDataType_t Ctype,
cudaDataType_t Dtype,
int requestedAlgoCount,
int algoIdsArray[],
int* returnAlgoCount);
/** Initialize algo structure
*
* \retval CUBLAS_STATUS_INVALID_VALUE if algo is NULL or algoId is outside of recognized range
* \retval CUBLAS_STATUS_NOT_SUPPORTED if algoId is not supported for given combination of data types
* \retval CUBLAS_STATUS_SUCCESS if the structure was successfully initialized
*/
cublasStatus_t CUBLASWINAPI cublasLtMatmulAlgoInit(cublasLtHandle_t lightHandle,
cublasComputeType_t computeType,
cudaDataType_t scaleType,
cudaDataType_t Atype,
cudaDataType_t Btype,
cudaDataType_t Ctype,
cudaDataType_t Dtype,
int algoId,
cublasLtMatmulAlgo_t* algo);
/** Check configured algo descriptor for correctness and support on current device.
*
* Result includes required workspace size and calculated wave count.
*
* CUBLAS_STATUS_SUCCESS doesn't fully guarantee algo will run (will fail if e.g. buffers are not correctly aligned);
* but if cublasLtMatmulAlgoCheck fails, the algo will not run.
*
* \param[in] algo algo configuration to check
* \param[out] result result structure to report algo runtime characteristics; algo field is never updated
*
* \retval CUBLAS_STATUS_INVALID_VALUE if matrix layout descriptors or operation descriptor don't match algo
* descriptor
* \retval CUBLAS_STATUS_NOT_SUPPORTED if algo configuration or data type combination is not currently supported on
* given device
* \retval CUBLAS_STATUS_ARCH_MISMATCH if algo configuration cannot be run using the selected device
* \retval CUBLAS_STATUS_SUCCESS if check was successful
*/
cublasStatus_t CUBLASWINAPI cublasLtMatmulAlgoCheck( //
cublasLtHandle_t lightHandle,
cublasLtMatmulDesc_t operationDesc,
cublasLtMatrixLayout_t Adesc,
cublasLtMatrixLayout_t Bdesc,
cublasLtMatrixLayout_t Cdesc,
cublasLtMatrixLayout_t Ddesc,
const cublasLtMatmulAlgo_t* algo, ///< may point to result->algo
cublasLtMatmulHeuristicResult_t* result);
/** Capabilities Attributes that can be retrieved from an initialized Algo structure
*/
typedef enum {
/** support for split K, see CUBLASLT_ALGO_CONFIG_SPLITK_NUM
*
* int32_t, 0 means no support, supported otherwise
*/
CUBLASLT_ALGO_CAP_SPLITK_SUPPORT = 0,
/** reduction scheme mask, see cublasLtReductionScheme_t; shows supported reduction schemes, if reduction scheme is
* not masked out it is supported.
*
* e.g. int isReductionSchemeComputeTypeSupported ? (reductionSchemeMask & CUBLASLT_REDUCTION_SCHEME_COMPUTE_TYPE) ==
* CUBLASLT_REDUCTION_SCHEME_COMPUTE_TYPE ? 1 : 0;
*
* uint32_t
*/
CUBLASLT_ALGO_CAP_REDUCTION_SCHEME_MASK = 1,
/** support for cta swizzling, see CUBLASLT_ALGO_CONFIG_CTA_SWIZZLING
*
* uint32_t, 0 means no support, 1 means supported value of 1, other values are reserved
*/
CUBLASLT_ALGO_CAP_CTA_SWIZZLING_SUPPORT = 2,
/** support strided batch
*
* int32_t, 0 means no support, supported otherwise
*/
CUBLASLT_ALGO_CAP_STRIDED_BATCH_SUPPORT = 3,
/** support results out of place (D != C in D = alpha.A.B + beta.C)
*
* int32_t, 0 means no support, supported otherwise
*/
CUBLASLT_ALGO_CAP_OUT_OF_PLACE_RESULT_SUPPORT = 4,
/** syrk/herk support (on top of regular gemm)
*
* int32_t, 0 means no support, supported otherwise
*/
CUBLASLT_ALGO_CAP_UPLO_SUPPORT = 5,
/** tile ids possible to use, see cublasLtMatmulTile_t; if no tile ids are supported use
* CUBLASLT_MATMUL_TILE_UNDEFINED
*
* use cublasLtMatmulAlgoCapGetAttribute() with sizeInBytes=0 to query actual count
*
* array of uint32_t
*/
CUBLASLT_ALGO_CAP_TILE_IDS = 6,
/** custom option range is from 0 to CUBLASLT_ALGO_CAP_CUSTOM_OPTION_MAX (inclusive), see
* CUBLASLT_ALGO_CONFIG_CUSTOM_OPTION
*
* int32_t
*/
CUBLASLT_ALGO_CAP_CUSTOM_OPTION_MAX = 7,
/** whether algorithm supports custom (not COL or ROW memory order), see cublasLtOrder_t
*
* int32_t 0 means only COL and ROW memory order is allowed, non-zero means that algo might have different
* requirements;
*/
CUBLASLT_ALGO_CAP_CUSTOM_MEMORY_ORDER = 10,
/** bitmask enumerating pointer modes algorithm supports
*
* uint32_t, see cublasLtPointerModeMask_t
*/
CUBLASLT_ALGO_CAP_POINTER_MODE_MASK = 11,
/** bitmask enumerating kinds of postprocessing algorithm supports in the epilogue
*
* uint32_t, see cublasLtEpilogue_t
*/
CUBLASLT_ALGO_CAP_EPILOGUE_MASK = 12,
/** stages ids possible to use, see cublasLtMatmulStages_t; if no stages ids are supported use
* CUBLASLT_MATMUL_STAGES_UNDEFINED
*
* use cublasLtMatmulAlgoCapGetAttribute() with sizeInBytes=0 to query actual count
*
* array of uint32_t
*/
CUBLASLT_ALGO_CAP_STAGES_IDS = 13,
/** support for nagative ld for all of the matrices
*
* int32_t 0 means no support, supported otherwise
*/
CUBLASLT_ALGO_CAP_LD_NEGATIVE = 14,
/** details about algorithm's implementation that affect it's numerical behavior
*
* uint64_t, see cublasLtNumericalImplFlags_t
*/
CUBLASLT_ALGO_CAP_NUMERICAL_IMPL_FLAGS = 15,
/** minimum alignment required for A matrix in bytes
* (required for buffer pointer, leading dimension, and possibly other strides defined for matrix memory order)
*
* uint32_t
*/
CUBLASLT_ALGO_CAP_MIN_ALIGNMENT_A_BYTES = 16,
/** minimum alignment required for B matrix in bytes
* (required for buffer pointer, leading dimension, and possibly other strides defined for matrix memory order)
*
* uint32_t
*/
CUBLASLT_ALGO_CAP_MIN_ALIGNMENT_B_BYTES = 17,
/** minimum alignment required for C matrix in bytes
* (required for buffer pointer, leading dimension, and possibly other strides defined for matrix memory order)
*
* uint32_t
*/
CUBLASLT_ALGO_CAP_MIN_ALIGNMENT_C_BYTES = 18,
/** minimum alignment required for D matrix in bytes
* (required for buffer pointer, leading dimension, and possibly other strides defined for matrix memory order)
*
* uint32_t
*/
CUBLASLT_ALGO_CAP_MIN_ALIGNMENT_D_BYTES = 19,
/** EXPERIMENTAL: support for synchronization via atomic counters
*
* int32_t
*/
CUBLASLT_ALGO_CAP_ATOMIC_SYNC = 20,
} cublasLtMatmulAlgoCapAttributes_t;
/** Get algo capability attribute.
*
* E.g. to get list of supported Tile IDs:
* cublasLtMatmulTile_t tiles[CUBLASLT_MATMUL_TILE_END];
* size_t num_tiles, size_written;
* if (cublasLtMatmulAlgoCapGetAttribute(algo, CUBLASLT_ALGO_CAP_TILE_IDS, tiles, sizeof(tiles), size_written) ==
* CUBLAS_STATUS_SUCCESS) { num_tiles = size_written / sizeof(tiles[0]);
* }
*
* \param[in] algo The algo descriptor
* \param[in] attr The attribute
* \param[out] buf memory address containing the new value
* \param[in] sizeInBytes size of buf buffer for verification (in bytes)
* \param[out] sizeWritten only valid when return value is CUBLAS_STATUS_SUCCESS. If sizeInBytes is non-zero: number of
* bytes actually written, if sizeInBytes is 0: number of bytes needed to write full contents
*
* \retval CUBLAS_STATUS_INVALID_VALUE if sizeInBytes is 0 and sizeWritten is NULL, or if sizeInBytes is non-zero
* and buf is NULL or sizeInBytes doesn't match size of internal storage for
* selected attribute
* \retval CUBLAS_STATUS_SUCCESS if attribute's value was successfully written to user memory
*/
cublasStatus_t CUBLASWINAPI cublasLtMatmulAlgoCapGetAttribute(const cublasLtMatmulAlgo_t* algo,
cublasLtMatmulAlgoCapAttributes_t attr,
void* buf,
size_t sizeInBytes,
size_t* sizeWritten);
/** Algo Configuration Attributes that can be set according to the Algo capabilities
*/
typedef enum {
/** algorithm index, see cublasLtMatmulAlgoGetIds()
*
* readonly, set by cublasLtMatmulAlgoInit()
* int32_t
*/
CUBLASLT_ALGO_CONFIG_ID = 0,
/** tile id, see cublasLtMatmulTile_t
*
* uint32_t, default: CUBLASLT_MATMUL_TILE_UNDEFINED
*/
CUBLASLT_ALGO_CONFIG_TILE_ID = 1,
/** Number of K splits. If the number of K splits is greater than one, SPLITK_NUM parts
* of matrix multiplication will be computed in parallel. The results will be accumulated
* according to CUBLASLT_ALGO_CONFIG_REDUCTION_SCHEME
*
* int32_t, default: 1
*/
CUBLASLT_ALGO_CONFIG_SPLITK_NUM = 2,
/** reduction scheme, see cublasLtReductionScheme_t
*
* uint32_t, default: CUBLASLT_REDUCTION_SCHEME_NONE
*/
CUBLASLT_ALGO_CONFIG_REDUCTION_SCHEME = 3,
/** cta swizzling, change mapping from CUDA grid coordinates to parts of the matrices
*
* possible values: 0, 1, other values reserved
*
* uint32_t, default: 0
*/
CUBLASLT_ALGO_CONFIG_CTA_SWIZZLING = 4,
/** custom option, each algorithm can support some custom options that don't fit description of the other config
* attributes, see CUBLASLT_ALGO_CAP_CUSTOM_OPTION_MAX to get accepted range for any specific case
*
* uint32_t, default: 0
*/
CUBLASLT_ALGO_CONFIG_CUSTOM_OPTION = 5,
/** stages id, see cublasLtMatmulStages_t
*
* uint32_t, default: CUBLASLT_MATMUL_STAGES_UNDEFINED
*/
CUBLASLT_ALGO_CONFIG_STAGES_ID = 6,
/** inner shape id, see cublasLtMatmulInnerShape_t
*
* uint16_t, default: 0 (CUBLASLT_MATMUL_INNER_SHAPE_UNDEFINED)
*/
CUBLASLT_ALGO_CONFIG_INNER_SHAPE_ID = 7,
/** Thread Block Cluster shape id, see cublasLtClusterShape_t. Defines cluster size to use.
*
* uint16_t, default: 0 (CUBLASLT_CLUSTER_SHAPE_AUTO)
*/
CUBLASLT_ALGO_CONFIG_CLUSTER_SHAPE_ID = 8,
} cublasLtMatmulAlgoConfigAttributes_t;
/** Set algo configuration attribute.
*
* \param[in] algo The algo descriptor
* \param[in] attr The attribute
* \param[in] buf memory address containing the new value
* \param[in] sizeInBytes size of buf buffer for verification (in bytes)
*
* \retval CUBLAS_STATUS_INVALID_VALUE if buf is NULL or sizeInBytes doesn't match size of internal storage for
* selected attribute
* \retval CUBLAS_STATUS_SUCCESS if attribute was set successfully
*/
cublasStatus_t CUBLASWINAPI cublasLtMatmulAlgoConfigSetAttribute(cublasLtMatmulAlgo_t* algo,
cublasLtMatmulAlgoConfigAttributes_t attr,
const void* buf,
size_t sizeInBytes);
/** Get algo configuration attribute.
*
* \param[in] algo The algo descriptor
* \param[in] attr The attribute
* \param[out] buf memory address containing the new value
* \param[in] sizeInBytes size of buf buffer for verification (in bytes)
* \param[out] sizeWritten only valid when return value is CUBLAS_STATUS_SUCCESS. If sizeInBytes is non-zero: number of
* bytes actually written, if sizeInBytes is 0: number of bytes needed to write full contents
*
* \retval CUBLAS_STATUS_INVALID_VALUE if sizeInBytes is 0 and sizeWritten is NULL, or if sizeInBytes is non-zero
* and buf is NULL or sizeInBytes doesn't match size of internal storage for
* selected attribute
* \retval CUBLAS_STATUS_SUCCESS if attribute's value was successfully written to user memory
*/
cublasStatus_t CUBLASWINAPI cublasLtMatmulAlgoConfigGetAttribute(const cublasLtMatmulAlgo_t* algo,
cublasLtMatmulAlgoConfigAttributes_t attr,
void* buf,
size_t sizeInBytes,
size_t* sizeWritten);
/** Experimental: Logger callback type.
*/
typedef void (*cublasLtLoggerCallback_t)(int logLevel, const char* functionName, const char* message);
/** Experimental: Logger callback setter.
*
* \param[in] callback a user defined callback function to be called by the logger
*
* \retval CUBLAS_STATUS_SUCCESS if callback was set successfully
*/
cublasStatus_t CUBLASWINAPI cublasLtLoggerSetCallback(cublasLtLoggerCallback_t callback);
/** Experimental: Log file setter.
*
* \param[in] file an open file with write permissions
*
* \retval CUBLAS_STATUS_SUCCESS if log file was set successfully
*/
cublasStatus_t CUBLASWINAPI cublasLtLoggerSetFile(FILE* file);
/** Experimental: Open log file.
*
* \param[in] logFile log file path. if the log file does not exist, it will be created
*
* \retval CUBLAS_STATUS_SUCCESS if log file was created successfully
*/
cublasStatus_t CUBLASWINAPI cublasLtLoggerOpenFile(const char* logFile);
/** Experimental: Log level setter.
*
* \param[in] level log level, should be one of the following:
* 0. Off
* 1. Errors
* 2. Performance Trace
* 3. Performance Hints
* 4. Heuristics Trace
* 5. API Trace
*
* \retval CUBLAS_STATUS_INVALID_VALUE if log level is not one of the above levels
*
* \retval CUBLAS_STATUS_SUCCESS if log level was set successfully
*/
cublasStatus_t CUBLASWINAPI cublasLtLoggerSetLevel(int level);
/** Experimental: Log mask setter.
*
* \param[in] mask log mask, should be a combination of the following masks:
* 0. Off
* 1. Errors
* 2. Performance Trace
* 4. Performance Hints
* 8. Heuristics Trace
* 16. API Trace
*
* \retval CUBLAS_STATUS_SUCCESS if log mask was set successfully
*/
cublasStatus_t CUBLASWINAPI cublasLtLoggerSetMask(int mask);
/** Experimental: Disable logging for the entire session.
*
* \retval CUBLAS_STATUS_SUCCESS if disabled logging
*/
cublasStatus_t CUBLASWINAPI cublasLtLoggerForceDisable();
#if defined(__cplusplus)
}
#endif /* __cplusplus */