DriverTrac/venv/lib/python3.12/site-packages/polars/io/json/read.py

102 lines
3.4 KiB
Python

from __future__ import annotations
import contextlib
from io import BytesIO, StringIO
from pathlib import Path
from typing import TYPE_CHECKING
from polars._utils.various import normalize_filepath
from polars._utils.wrap import wrap_df
from polars.datatypes import N_INFER_DEFAULT
with contextlib.suppress(ImportError): # Module not available when building docs
from polars._plr import PyDataFrame
if TYPE_CHECKING:
from io import IOBase
from polars import DataFrame
from polars._typing import SchemaDefinition
def read_json(
source: str | Path | IOBase | bytes,
*,
schema: SchemaDefinition | None = None,
schema_overrides: SchemaDefinition | None = None,
infer_schema_length: int | None = N_INFER_DEFAULT,
) -> DataFrame:
"""
Read into a DataFrame from a JSON file.
Parameters
----------
source
Path to a file or a file-like object (by "file-like object" we refer to objects
that have a `read()` method, such as a file handler like the builtin `open`
function, or a `BytesIO` instance). For file-like objects, the stream position
may not be updated accordingly after reading.
schema : Sequence of str, (str,DataType) pairs, or a {str:DataType,} dict
The DataFrame schema may be declared in several ways:
* As a dict of {name:type} pairs; if type is None, it will be auto-inferred.
* As a list of column names; in this case types are automatically inferred.
* As a list of (name,type) pairs; this is equivalent to the dictionary form.
If you supply a list of column names that does not match the names in the
underlying data, the names given here will overwrite them. The number
of names given in the schema should match the underlying data dimensions.
schema_overrides : dict, default None
Support type specification or override of one or more columns; note that
any dtypes inferred from the schema param will be overridden.
infer_schema_length
The maximum number of rows to scan for schema inference.
If set to `None`, the full data may be scanned *(this is slow)*.
See Also
--------
read_ndjson
Examples
--------
>>> from io import StringIO
>>> json_str = '[{"foo":1,"bar":6},{"foo":2,"bar":7},{"foo":3,"bar":8}]'
>>> pl.read_json(StringIO(json_str))
shape: (3, 2)
┌─────┬─────┐
│ foo ┆ bar │
│ --- ┆ --- │
│ i64 ┆ i64 │
╞═════╪═════╡
│ 1 ┆ 6 │
│ 2 ┆ 7 │
│ 3 ┆ 8 │
└─────┴─────┘
With the schema defined.
>>> pl.read_json(StringIO(json_str), schema={"foo": pl.Int64, "bar": pl.Float64})
shape: (3, 2)
┌─────┬─────┐
│ foo ┆ bar │
│ --- ┆ --- │
│ i64 ┆ f64 │
╞═════╪═════╡
│ 1 ┆ 6.0 │
│ 2 ┆ 7.0 │
│ 3 ┆ 8.0 │
└─────┴─────┘
"""
if isinstance(source, StringIO):
source = BytesIO(source.getvalue().encode())
elif isinstance(source, (str, Path)):
source = normalize_filepath(source)
pydf = PyDataFrame.read_json(
source,
infer_schema_length=infer_schema_length,
schema=schema,
schema_overrides=schema_overrides,
)
return wrap_df(pydf)