DriverTrac/venv/lib/python3.12/site-packages/thop/vision/basic_hooks.py

177 lines
5.3 KiB
Python

# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
import logging
import torch
import torch.nn as nn
from torch.nn.modules.conv import _ConvNd
from thop.vision.calc_func import (
calculate_adaptive_avg,
calculate_avgpool,
calculate_conv,
calculate_conv2d_flops,
calculate_linear,
calculate_norm,
calculate_parameters,
calculate_relu,
calculate_relu_flops,
calculate_softmax,
calculate_upsample,
calculate_zero_ops,
)
multiply_adds = 1
def count_parameters(m, x, y):
"""Calculate and return the total number of learnable parameters in a given PyTorch model."""
m.total_params[0] = calculate_parameters(m.parameters())
def zero_ops(m, x, y):
"""Incrementally add zero operations to the model's total operations count."""
m.total_ops += calculate_zero_ops()
def count_convNd(m: _ConvNd, x, y: torch.Tensor):
"""Calculate and add the number of convolutional operations (FLOPs) for a ConvNd layer to the model's total ops."""
x = x[0]
m.total_ops += calculate_conv2d_flops(
input_size=list(x.shape),
output_size=list(y.shape),
kernel_size=list(m.weight.shape),
groups=m.groups,
bias=m.bias,
transpose=False,
)
# N x Cout x H x W x (Cin x Kw x Kh + bias)
# m.total_ops += calculate_conv(
# bias_ops,
# torch.zeros(m.weight.size()[2:]).numel(),
# y.nelement(),
# m.in_channels,
# m.groups,
# )
def count_convtNd(m: _ConvNd, x, y: torch.Tensor):
"""Calculate and add the number of convolutional operations (FLOPs) for a ConvNd layer to the model's total ops."""
x = x[0]
m.total_ops += calculate_conv2d_flops(
input_size=list(x.shape),
output_size=list(y.shape),
kernel_size=list(m.weight.shape),
groups=m.groups,
bias=m.bias,
transpose=True,
)
def count_convNd_ver2(m: _ConvNd, x, y: torch.Tensor):
"""Calculates and updates total operations (FLOPs) for a convolutional layer in a PyTorch model."""
x = x[0]
# N x H x W (exclude Cout)
output_size = torch.zeros(y.size()[:1] + y.size()[2:]).numel()
# # Cout x Cin x Kw x Kh
# kernel_ops = m.weight.nelement()
# if m.bias is not None:
# # Cout x 1
# kernel_ops += + m.bias.nelement()
# # x N x H x W x Cout x (Cin x Kw x Kh + bias)
# m.total_ops += torch.DoubleTensor([int(output_size * kernel_ops)])
m.total_ops += calculate_conv(m.bias.nelement(), m.weight.nelement(), output_size)
def count_normalization(m: nn.modules.batchnorm._BatchNorm, x, y):
"""Calculate and add the FLOPs for a batch normalization layer, including elementwise and affine operations."""
# https://github.com/Lyken17/pytorch-OpCounter/issues/124
# y = (x - mean) / sqrt(eps + var) * weight + bias
x = x[0]
# bn is by default fused in inference
flops = calculate_norm(x.numel())
if getattr(m, "affine", False) or getattr(m, "elementwise_affine", False):
flops *= 2
m.total_ops += flops
# def count_layer_norm(m, x, y):
# x = x[0]
# m.total_ops += calculate_norm(x.numel())
# def count_instance_norm(m, x, y):
# x = x[0]
# m.total_ops += calculate_norm(x.numel())
def count_prelu(m, x, y):
"""Calculate and update the total operation counts for a PReLU layer using input element number."""
x = x[0]
nelements = x.numel()
if not m.training:
m.total_ops += calculate_relu(nelements)
def count_relu(m, x, y):
"""Calculate and update the total operation counts for a ReLU layer."""
x = x[0]
m.total_ops += calculate_relu_flops(list(x.shape))
def count_softmax(m, x, y):
"""Calculate and update the total operation counts for a Softmax layer in a PyTorch model."""
x = x[0]
nfeatures = x.size()[m.dim]
batch_size = x.numel() // nfeatures
m.total_ops += calculate_softmax(batch_size, nfeatures)
def count_avgpool(m, x, y):
"""Calculate and update the total number of operations (FLOPs) for an AvgPool layer based on the output elements."""
# total_div = 1
# kernel_ops = total_add + total_div
num_elements = y.numel()
m.total_ops += calculate_avgpool(num_elements)
def count_adap_avgpool(m, x, y):
"""Calculate and update the total operation counts for an AdaptiveAvgPool layer using kernel and element counts."""
kernel = torch.div(torch.DoubleTensor([*(x[0].shape[2:])]), torch.DoubleTensor([*(y.shape[2:])]))
total_add = torch.prod(kernel)
num_elements = y.numel()
m.total_ops += calculate_adaptive_avg(total_add, num_elements)
# TODO: verify the accuracy
def count_upsample(m, x, y):
"""Update total operations counter for upsampling layers based on the mode used."""
if m.mode not in (
"nearest",
"linear",
"bilinear",
"bicubic",
"trilinear",
):
logging.warning(f"mode {m.mode} is not implemented yet, take it a zero op")
m.total_ops += 0
else:
x = x[0]
m.total_ops += calculate_upsample(m.mode, y.nelement())
# nn.Linear
def count_linear(m, x, y):
"""Counts total operations for nn.Linear layers using input and output element dimensions."""
total_mul = m.in_features
# total_add = m.in_features - 1
# total_add += 1 if m.bias is not None else 0
num_elements = y.numel()
m.total_ops += calculate_linear(total_mul, num_elements)