DriverTrac/venv/lib/python3.12/site-packages/triton/tools/mxfp.py

302 lines
12 KiB
Python

"""
Helper classes for working with low precision floating point types that
align with the opencompute (OCP) microscaling (MX) specification.
* MXFP4Tensor: 4-bit E2M1 floating point data
* MXScaleTensor: 8-bit E8M0 floating point data
Reference: https://www.opencompute.org/documents/ocp-microscaling-formats-mx-v1-0-spec-final-pdf
"""
import torch
class MXFP4Tensor:
def __init__(self, data=None, size=None, device=None):
"""
Tensor class for working with four bit E2M1 floating point data as defined by the
opencompute microscaling specification.
Parameters:
- data: A torch tensor of float32 numbers to convert to fp4e2m1 microscaling format.
- size: The size of the tensor to create.
- device: The device on which to create the tensor.
"""
self.device = device
if data is not None:
assert isinstance(data, torch.Tensor), "Parameter data must be a torch tensor"
self.device = data.device
self.data = self._from_float(data)
elif size is not None:
self.size = size if isinstance(size, tuple) else (size, )
else:
raise ValueError("Either parameter data or size must be provided")
def random(self):
S = torch.randint(0, 2, size=self.size, dtype=torch.uint8, device=self.device)
E = torch.randint(0, 4, size=self.size, dtype=torch.uint8, device=self.device)
M = torch.randint(0, 2, size=self.size, dtype=torch.uint8, device=self.device)
self.data = ((S << 3) | (E << 1) | M).type(torch.uint8)
return self
def to(self, dtype):
"""
Convert fp4e2m1 data to float32.
Returns:
- A torch tensor of type dtype representing the fp4e2m1 data.
"""
assert dtype == torch.float32, "Currently only float32 is supported for fp4e2m1 to float conversion"
data = self.data
S = ((data >> 3) & 0x1).type(dtype)
E = ((data >> 1) & 0x3).type(dtype)
M = (data & 0x1).type(dtype)
# The MXF4 E2M1 spec defines 0bS000 as zero
value = torch.zeros_like(S)
is_zero = (E == 0) & (M == 0)
non_zero_mask = ~is_zero
if non_zero_mask.any():
S_nz = S[non_zero_mask]
E_nz = E[non_zero_mask]
M_nz = M[non_zero_mask]
sign = torch.pow(-1, S_nz)
# Normal and subnormal handling for the exponent and mantissa
exponent = torch.where(E_nz == 0, E_nz, E_nz - 1)
mantissa = torch.where(E_nz == 0, M_nz * 0.5, 1.0 + M_nz * 0.5)
value_nz = sign * torch.pow(2, exponent) * mantissa
value[non_zero_mask] = value_nz
# For zeros, the values must remain zero with the correct sign
value[is_zero & (S == 1)] *= -1
return value.type(torch.float32)
def _from_float(self, values):
"""
Convert float32 numbers to mxf4 e2m1 format.
* No encodings are reserved for Inf or NaN in mxf4.
* Conversion from float supports roundTiesToEven rounding mode.
* If a value exceeds the mxf4 representable range after rounding,
clamps to the maximum mxf4 magnitude, preserving the sign.
* If a value has magnitude less than the minimum subnormal magnitude
in mxf4 after rounding, converts to zero.
Parameters:
- values: A torch tensor of float32 numbers to convert to fp4 format.
"""
S = torch.signbit(values).type(torch.uint8)
abs_values = torch.abs(values)
is_zero = (abs_values == 0)
is_invalid = torch.isnan(values) | torch.isinf(values)
# Enumerate all possible E2M1 exponent and mantissa values. We will
# use these to compare the distance between float32 and all possible
# E2M1 floats to find the nearest E2M1 representable value
E_bits = torch.tensor([0, 1, 2, 3], dtype=torch.uint8, device=self.device)
M_bits = torch.tensor([0, 1], dtype=torch.uint8, device=self.device)
candidate_values = []
candidate_E = []
candidate_M = []
for E in E_bits:
if E == 0:
# Subnormals
exponent = 0
for M in M_bits:
significand = M * 0.5
value = significand * (2**exponent)
candidate_values.append(value)
candidate_E.append(E)
candidate_M.append(M)
else:
# Normals
exponent = E.item() - 1
for M in M_bits:
significand = 1.0 + M * 0.5
value = significand * (2**exponent)
candidate_values.append(value)
candidate_E.append(E)
candidate_M.append(M)
candidates = torch.tensor(candidate_values, dtype=torch.float32, device=self.device)
candidate_E = torch.tensor(candidate_E, dtype=torch.uint8, device=self.device)
candidate_M = torch.tensor(candidate_M, dtype=torch.uint8, device=self.device)
abs_values_flat = abs_values.view(-1)
N = abs_values_flat.shape[0]
abs_values_expanded = abs_values_flat.unsqueeze(1)
# Clamp invalid values to the max e2m1 representable value
max_candidate_value = candidates.max().item()
abs_values_flat[is_invalid.view(-1)] = max_candidate_value
# Compute distance between all abs_values and candidate e2m1 values
errors = torch.abs(abs_values_expanded - candidates.unsqueeze(0))
# To implement roundTiesToEven, we need to break ties by preferring
# even mantissas (M == 0). We do so by adding an epsilon bias to shift
# the closest candidate with an even mantissa closer to the float value
min_errors, _ = torch.min(errors, dim=1, keepdim=True)
is_tie = (errors == min_errors)
# More than one candidate has the min error for some float value
if is_tie.sum() > 1:
M_bits_expanded = candidate_M.unsqueeze(0).expand(N, -1)
tie_breaker = (M_bits_expanded == 0).type(torch.int32)
errors = errors - (tie_breaker * 1e-6)
best_indices = torch.argmin(errors, dim=1)
E_selected = candidate_E[best_indices]
M_selected = candidate_M[best_indices]
E = E_selected.view(abs_values.shape)
M = M_selected.view(abs_values.shape)
E[is_zero] = 0
M[is_zero] = 0
return ((S << 3) | (E << 1) | M).type(torch.uint8)
def to_packed_tensor(self, dim):
"""
Packs two e2m1 elements into a single uint8 along the specified dimension.
Parameters:
- dim: The dimension along which to pack the elements.
Returns:
- A torch tensor of dtype uint8 with two e2m1 elements packed into one uint8.
"""
data = self.data
assert 0 <= dim < data.ndim, \
"The dimension to pack along is not within the range of tensor dimensions"
size_along_dim = data.size(dim)
new_size_along_dim = (size_along_dim + 1) // 2
# If the size is odd, we pad the data along dim with zeros at the end
if size_along_dim % 2 != 0:
pad_sizes = [0] * (2 * data.ndim)
pad_index = (data.ndim - dim - 1) * 2 + 1
pad_sizes[pad_index] = 1
data = torch.nn.functional.pad(data, pad_sizes, mode='constant', value=0)
new_shape = list(data.shape)
new_shape[dim] = new_size_along_dim
new_shape.insert(dim + 1, 2) # packed dimension of length 2
data = data.reshape(*new_shape)
low = data.select(dim + 1, 0)
high = data.select(dim + 1, 1)
packed = (high << 4) | low
return packed
def unpack_packed_tensor(self, packed_tensor, dim, original_shape):
"""
Unpacks a tensor where two fp4 elements are packed into a single uint8.
Parameters:
- packed_tensor: The packed tensor
- dim: The dimension along which the tensor was packed.
- original_shape: The shape of the original tensor before packing.
Returns:
- A tensor with the original data unpacked into uint8 elements containing one
fp4e2m1 element in the least significant bits.
"""
high = (packed_tensor >> 4) & 0xF
low = packed_tensor & 0xF
stacked = torch.stack((low, high), dim=dim + 1)
# Flatten along dim and dim+1 and then merge
shape = list(stacked.shape)
new_shape = shape[:dim] + [shape[dim] * 2] + shape[dim + 2:]
data = stacked.reshape(*new_shape)
# Remove any padding
if original_shape[dim] % 2 != 0:
indices = [slice(None)] * data.ndim
indices[dim] = slice(0, original_shape[dim])
data = data[tuple(indices)]
return data.type(torch.uint8)
class MXScaleTensor:
def __init__(self, data=None, size=None, device=None):
"""
Tensor class for working with microscaling E8M0 block scale factors.
Parameters:
- data: A torch tensor of float32 numbers to convert to fp8e8m0 microscaling format.
- size: The size of the tensor to create.
- device: The device on which to create the tensor.
"""
self.device = device
if data is not None:
assert isinstance(data, torch.Tensor), "Parameter data must be a torch tensor"
self.device = data.device
self.data = self._from_float(data)
elif size is not None:
self.size = size if isinstance(size, tuple) else (size, )
else:
raise ValueError("Either parameter data or size must be provided")
def random(self, low=None, high=None):
"""
Generate random E8M0 data within a specified range.
* Excludes the NaN encoding (255).
"""
bias = 127
min_exponent = 0 if low is None else max(0, int(torch.log2(torch.tensor(low))) + bias)
max_exponent = 254 if high is None else min(254, max(0, int(torch.log2(torch.tensor(high))) + bias))
assert min_exponent <= max_exponent, "Low must be less than or equal to high"
E = torch.randint(min_exponent, max_exponent + 1, size=self.size, dtype=torch.uint8, device=self.device)
self.data = E
return self
def to(self, dtype):
assert dtype == torch.float32, "Currently only float32 is supported for f8e8m0 to float conversion"
data = self.data.type(dtype)
is_nan = (data == 255)
e_biased = data.clone()
e_biased[is_nan] = 0
e = e_biased - 127
value = torch.pow(2.0, e)
value[is_nan] = torch.nan
return value.type(dtype)
def _from_float(self, values):
"""
Convert float32 numbers to E8M0 format.
* Values <= 0, NaNs, and Infs are converted to the NaN encoding (255).
* Positive values are converted by computing the floor of log2(value) to get the exponent.
Parameters:
- values: A torch tensor of float32 numbers to convert to E8M0 format.
"""
result = torch.empty_like(values, dtype=torch.uint8, device=self.device)
is_invalid = torch.isnan(values) | torch.isinf(values) | (values <= 0)
result[is_invalid] = 255
valid_values = values[~is_invalid]
e = torch.floor(torch.log2(valid_values))
e_biased = e + 127
e_biased_int = e_biased.type(torch.int32)
e_biased_clamped = torch.clamp(e_biased_int, 0, 254)
result[~is_invalid] = e_biased_clamped.type(torch.uint8)
return result