# Vertex AI Gemini Integration ## Overview The AI service has been migrated from multi-provider support (Claude, OpenAI, Gemini API) to **Google Cloud Vertex AI Gemini** using service account authentication. This provides better enterprise-grade security and uses the same credentials as Google Cloud Storage. ## Changes Made ### 1. Package Dependencies **Removed:** - `@anthropic-ai/sdk` (Claude SDK) - `@google/generative-ai` (Gemini API SDK) - `openai` (OpenAI SDK) **Added:** - `@google-cloud/vertexai` (Vertex AI SDK) ### 2. Service Account Authentication The AI service now uses the same service account JSON file as GCS: - **Location**: `credentials/re-platform-workflow-dealer-3d5738fcc1f9.json` - **Project ID**: `re-platform-workflow-dealer` - **Default Region**: `us-central1` ### 3. Configuration **Environment Variables:** ```env # Required (already configured for GCS) GCP_PROJECT_ID=re-platform-workflow-dealer GCP_KEY_FILE=./credentials/re-platform-workflow-dealer-3d5738fcc1f9.json # Optional (defaults provided) VERTEX_AI_MODEL=gemini-2.5-flash VERTEX_AI_LOCATION=asia-south1 AI_ENABLED=true ``` **Admin Panel Configuration:** - `AI_ENABLED` - Enable/disable AI features - `VERTEX_AI_MODEL` - Model name (default: `gemini-2.5-flash`) - `AI_MAX_REMARK_LENGTH` - Maximum characters for conclusion remarks (default: 2000) ### 4. Available Models | Model Name | Description | Use Case | |------------|-------------|----------| | `gemini-2.5-flash` | Latest fast model (default) | General purpose, quick responses | | `gemini-1.5-flash` | Previous fast model | General purpose | | `gemini-1.5-pro` | Advanced model | Complex tasks, better quality | | `gemini-1.5-pro-latest` | Latest Pro version | Best quality, complex reasoning | ### 5. Supported Regions | Region Code | Location | Availability | |-------------|----------|--------------| | `us-central1` | Iowa, USA | ✅ Default | | `us-east1` | South Carolina, USA | ✅ | | `us-west1` | Oregon, USA | ✅ | | `europe-west1` | Belgium | ✅ | | `asia-south1` | Mumbai, India | ✅ | ## Setup Instructions ### Step 1: Install Dependencies ```bash cd Re_Backend npm install ``` This will install `@google-cloud/vertexai` and remove old AI SDKs. ### Step 2: Verify Service Account Permissions Ensure your service account (`re-bridge-workflow@re-platform-workflow-dealer.iam.gserviceaccount.com`) has: - **Vertex AI User** role (`roles/aiplatform.user`) ### Step 3: Enable Vertex AI API 1. Go to [Google Cloud Console](https://console.cloud.google.com/) 2. Navigate to **APIs & Services** > **Library** 3. Search for **"Vertex AI API"** 4. Click **Enable** ### Step 4: Verify Configuration Check that your `.env` file has: ```env GCP_PROJECT_ID=re-platform-workflow-dealer GCP_KEY_FILE=./credentials/re-platform-workflow-dealer-3d5738fcc1f9.json VERTEX_AI_MODEL=gemini-2.5-flash VERTEX_AI_LOCATION=us-central1 ``` ### Step 5: Test the Integration Start the backend and check logs for: ``` [AI Service] ✅ Vertex AI provider initialized successfully with model: gemini-2.5-flash ``` ## API Interface (Unchanged) The public API remains the same - no changes needed in controllers or routes: ```typescript // Check if AI is available aiService.isAvailable(): boolean // Get provider name aiService.getProviderName(): string // Generate conclusion remark aiService.generateConclusionRemark(context): Promise<{ remark: string; confidence: number; keyPoints: string[]; provider: string; }> // Reinitialize (after config changes) aiService.reinitialize(): Promise ``` ## Troubleshooting ### Error: "Module not found: @google-cloud/vertexai" **Solution:** ```bash npm install @google-cloud/vertexai ``` ### Error: "Service account key file not found" **Solution:** - Verify file exists at: `credentials/re-platform-workflow-dealer-3d5738fcc1f9.json` - Check `GCP_KEY_FILE` path in `.env` is correct - Ensure file has read permissions ### Error: "Model was not found or your project does not have access" **Solution:** - Verify Vertex AI API is enabled in Google Cloud Console - Check model name is correct (e.g., `gemini-2.5-flash`) - Ensure model is available in your selected region - Verify service account has `roles/aiplatform.user` role ### Error: "Permission denied" **Solution:** - Verify service account has Vertex AI User role - Check service account key hasn't been revoked - Regenerate service account key if needed ### Error: "API not enabled" **Solution:** - Enable Vertex AI API in Google Cloud Console - Wait a few minutes for propagation - Restart the backend service ## Migration Notes ### What Changed - ✅ Removed multi-provider support (Claude, OpenAI, Gemini API) - ✅ Now uses Vertex AI Gemini exclusively - ✅ Uses service account authentication (same as GCS) - ✅ Simplified configuration (no API keys needed) ### What Stayed the Same - ✅ Public API interface (`aiService` methods) - ✅ Conclusion generation functionality - ✅ Admin panel configuration structure - ✅ Error handling and logging ### Backward Compatibility - ✅ Existing code using `aiService` will work without changes - ✅ Conclusion controller unchanged - ✅ Admin panel can still enable/disable AI features - ✅ Configuration cache system still works ## Verification Checklist - [ ] `@google-cloud/vertexai` package installed - [ ] Service account key file exists and is valid - [ ] Vertex AI API is enabled in Google Cloud Console - [ ] Service account has `Vertex AI User` role - [ ] `.env` file has correct `GCP_PROJECT_ID` and `GCP_KEY_FILE` - [ ] Backend logs show successful initialization - [ ] AI conclusion generation works for test requests ## Support For issues or questions: 1. Check backend logs for detailed error messages 2. Verify Google Cloud Console settings 3. Ensure service account permissions are correct 4. Test with a simple request to isolate issues