207 lines
8.7 KiB
XML
207 lines
8.7 KiB
XML
<?xml version="1.0"?>
|
|
<doc>
|
|
<assembly>
|
|
<name>Mono.Math</name>
|
|
</assembly>
|
|
<members>
|
|
<member name="F:Mono.Math.BigInteger.DEFAULT_LEN">
|
|
<summary>
|
|
Default length of a BigInteger in bytes
|
|
</summary>
|
|
</member>
|
|
<member name="F:Mono.Math.BigInteger.length">
|
|
<summary>
|
|
The Length of this BigInteger
|
|
</summary>
|
|
</member>
|
|
<member name="F:Mono.Math.BigInteger.data">
|
|
<summary>
|
|
The data for this BigInteger
|
|
</summary>
|
|
</member>
|
|
<member name="F:Mono.Math.BigInteger.smallPrimes">
|
|
<summary>
|
|
Table of primes below 2000.
|
|
</summary>
|
|
<remarks>
|
|
<para>
|
|
This table was generated using Mathematica 4.1 using the following function:
|
|
</para>
|
|
<para>
|
|
<code>
|
|
PrimeTable [x_] := Prime [Range [1, PrimePi [x]]]
|
|
PrimeTable [6000]
|
|
</code>
|
|
</para>
|
|
</remarks>
|
|
</member>
|
|
<member name="M:Mono.Math.BigInteger.genRandom(System.Int32,System.Security.Cryptography.RandomNumberGenerator)">
|
|
<summary>
|
|
Generates a new, random BigInteger of the specified length.
|
|
</summary>
|
|
<param name="bits">The number of bits for the new number.</param>
|
|
<param name="rng">A random number generator to use to obtain the bits.</param>
|
|
<returns>A random number of the specified length.</returns>
|
|
</member>
|
|
<member name="M:Mono.Math.BigInteger.genRandom(System.Int32)">
|
|
<summary>
|
|
Generates a new, random BigInteger of the specified length using the default RNG crypto service provider.
|
|
</summary>
|
|
<param name="bits">The number of bits for the new number.</param>
|
|
<returns>A random number of the specified length.</returns>
|
|
</member>
|
|
<member name="M:Mono.Math.BigInteger.randomize(System.Security.Cryptography.RandomNumberGenerator)">
|
|
<summary>
|
|
Randomizes the bits in "this" from the specified RNG.
|
|
</summary>
|
|
<param name="rng">A RNG.</param>
|
|
</member>
|
|
<member name="M:Mono.Math.BigInteger.randomize">
|
|
<summary>
|
|
Randomizes the bits in "this" from the default RNG.
|
|
</summary>
|
|
</member>
|
|
<member name="M:Mono.Math.BigInteger.testBit(System.UInt32)">
|
|
<summary>
|
|
Tests if the specified bit is 1.
|
|
</summary>
|
|
<param name="bitNum">The bit to test. The least significant bit is 0.</param>
|
|
<returns>True if bitNum is set to 1, else false.</returns>
|
|
</member>
|
|
<member name="M:Mono.Math.BigInteger.Normalize">
|
|
<summary>
|
|
Normalizes this by setting the length to the actual number of
|
|
uints used in data and by setting the sign to Sign.Zero if the
|
|
value of this is 0.
|
|
</summary>
|
|
</member>
|
|
<member name="M:Mono.Math.BigInteger.NextHightestPrime(Mono.Math.BigInteger)">
|
|
<summary>
|
|
Generates the smallest prime >= bi
|
|
</summary>
|
|
<param name="bi">A BigInteger</param>
|
|
<returns>The smallest prime >= bi. More mathematically, if bi is prime: bi, else Prime [PrimePi [bi] + 1].</returns>
|
|
</member>
|
|
<member name="M:Mono.Math.BigInteger.Incr2">
|
|
<summary>
|
|
Increments this by two
|
|
</summary>
|
|
</member>
|
|
<member name="T:Mono.Math.BigInteger.Kernel">
|
|
<summary>
|
|
Low level functions for the BigInteger
|
|
</summary>
|
|
</member>
|
|
<member name="M:Mono.Math.BigInteger.Kernel.AddSameSign(Mono.Math.BigInteger,Mono.Math.BigInteger)">
|
|
<summary>
|
|
Adds two numbers with the same sign.
|
|
</summary>
|
|
<param name="bi1">A BigInteger</param>
|
|
<param name="bi2">A BigInteger</param>
|
|
<returns>bi1 + bi2</returns>
|
|
</member>
|
|
<member name="M:Mono.Math.BigInteger.Kernel.Compare(Mono.Math.BigInteger,Mono.Math.BigInteger)">
|
|
<summary>
|
|
Compares two BigInteger
|
|
</summary>
|
|
<param name="bi1">A BigInteger</param>
|
|
<param name="bi2">A BigInteger</param>
|
|
<returns>The sign of bi1 - bi2</returns>
|
|
</member>
|
|
<member name="M:Mono.Math.BigInteger.Kernel.SingleByteDivideInPlace(Mono.Math.BigInteger,System.UInt32)">
|
|
<summary>
|
|
Performs n / d and n % d in one operation.
|
|
</summary>
|
|
<param name="n">A BigInteger, upon exit this will hold n / d</param>
|
|
<param name="d">The divisor</param>
|
|
<returns>n % d</returns>
|
|
</member>
|
|
<member name="M:Mono.Math.BigInteger.Kernel.Multiply(System.UInt32[],System.UInt32,System.UInt32,System.UInt32[],System.UInt32,System.UInt32,System.UInt32[],System.UInt32)">
|
|
<summary>
|
|
Multiplies the data in x [xOffset:xOffset+xLen] by
|
|
y [yOffset:yOffset+yLen] and puts it into
|
|
d [dOffset:dOffset+xLen+yLen].
|
|
</summary>
|
|
</member>
|
|
<member name="M:Mono.Math.BigInteger.Kernel.MultiplyMod2p32pmod(System.UInt32[],System.Int32,System.Int32,System.UInt32[],System.Int32,System.Int32,System.UInt32[],System.Int32,System.Int32)">
|
|
<summary>
|
|
Multiplies the data in x [xOffset:xOffset+xLen] by
|
|
y [yOffset:yOffset+yLen] and puts the low mod words into
|
|
d [dOffset:dOffset+mod].
|
|
</summary>
|
|
</member>
|
|
<member name="T:Mono.Math.Prime.ConfidenceFactor">
|
|
<summary>
|
|
A factor of confidence.
|
|
</summary>
|
|
</member>
|
|
<member name="F:Mono.Math.Prime.ConfidenceFactor.ExtraLow">
|
|
<summary>
|
|
Only suitable for development use, probability of failure may be greater than 1/2^20.
|
|
</summary>
|
|
</member>
|
|
<member name="F:Mono.Math.Prime.ConfidenceFactor.Low">
|
|
<summary>
|
|
Suitable only for transactions which do not require forward secrecy. Probability of failure about 1/2^40
|
|
</summary>
|
|
</member>
|
|
<member name="F:Mono.Math.Prime.ConfidenceFactor.Medium">
|
|
<summary>
|
|
Designed for production use. Probability of failure about 1/2^80.
|
|
</summary>
|
|
</member>
|
|
<member name="F:Mono.Math.Prime.ConfidenceFactor.High">
|
|
<summary>
|
|
Suitable for sensitive data. Probability of failure about 1/2^160.
|
|
</summary>
|
|
</member>
|
|
<member name="F:Mono.Math.Prime.ConfidenceFactor.ExtraHigh">
|
|
<summary>
|
|
Use only if you have lots of time! Probability of failure about 1/2^320.
|
|
</summary>
|
|
</member>
|
|
<member name="F:Mono.Math.Prime.ConfidenceFactor.Provable">
|
|
<summary>
|
|
Only use methods which generate provable primes. Not yet implemented.
|
|
</summary>
|
|
</member>
|
|
<member name="T:Mono.Math.Prime.Generator.NextPrimeFinder">
|
|
<summary>
|
|
Finds the next prime after a given number.
|
|
</summary>
|
|
</member>
|
|
<member name="M:Mono.Math.Prime.Generator.PrimeGeneratorBase.PostTrialDivisionTests(Mono.Math.BigInteger)">
|
|
<summary>
|
|
Performs primality tests on bi, assumes trial division has been done.
|
|
</summary>
|
|
<param name="bi">A BigInteger that has been subjected to and passed trial division</param>
|
|
<returns>False if bi is composite, true if it may be prime.</returns>
|
|
<remarks>The speed of this method is dependent on Confidence</remarks>
|
|
</member>
|
|
<member name="M:Mono.Math.Prime.PrimalityTests.RabinMillerTest(Mono.Math.BigInteger,Mono.Math.Prime.ConfidenceFactor)">
|
|
<summary>
|
|
Probabilistic prime test based on Rabin-Miller's test
|
|
</summary>
|
|
<param name="bi" type="BigInteger.BigInteger">
|
|
<para>
|
|
The number to test.
|
|
</para>
|
|
</param>
|
|
<param name="confidence" type="int">
|
|
<para>
|
|
The number of chosen bases. The test has at least a
|
|
1/4^confidence chance of falsely returning True.
|
|
</para>
|
|
</param>
|
|
<returns>
|
|
<para>
|
|
True if "this" is a strong pseudoprime to randomly chosen bases.
|
|
</para>
|
|
<para>
|
|
False if "this" is definitely NOT prime.
|
|
</para>
|
|
</returns>
|
|
</member>
|
|
</members>
|
|
</doc>
|