EOS-WebAPI/packages/DotNetOpenAuth.OpenId.Core.4.0.3.12163/lib/net35-full/Mono.Math.xml
Nidhi Bhargava d0ac8a7790 Code Commit
2025-09-04 17:30:22 +05:30

207 lines
8.7 KiB
XML

<?xml version="1.0"?>
<doc>
<assembly>
<name>Mono.Math</name>
</assembly>
<members>
<member name="F:Mono.Math.BigInteger.DEFAULT_LEN">
<summary>
Default length of a BigInteger in bytes
</summary>
</member>
<member name="F:Mono.Math.BigInteger.length">
<summary>
The Length of this BigInteger
</summary>
</member>
<member name="F:Mono.Math.BigInteger.data">
<summary>
The data for this BigInteger
</summary>
</member>
<member name="F:Mono.Math.BigInteger.smallPrimes">
<summary>
Table of primes below 2000.
</summary>
<remarks>
<para>
This table was generated using Mathematica 4.1 using the following function:
</para>
<para>
<code>
PrimeTable [x_] := Prime [Range [1, PrimePi [x]]]
PrimeTable [6000]
</code>
</para>
</remarks>
</member>
<member name="M:Mono.Math.BigInteger.genRandom(System.Int32,System.Security.Cryptography.RandomNumberGenerator)">
<summary>
Generates a new, random BigInteger of the specified length.
</summary>
<param name="bits">The number of bits for the new number.</param>
<param name="rng">A random number generator to use to obtain the bits.</param>
<returns>A random number of the specified length.</returns>
</member>
<member name="M:Mono.Math.BigInteger.genRandom(System.Int32)">
<summary>
Generates a new, random BigInteger of the specified length using the default RNG crypto service provider.
</summary>
<param name="bits">The number of bits for the new number.</param>
<returns>A random number of the specified length.</returns>
</member>
<member name="M:Mono.Math.BigInteger.randomize(System.Security.Cryptography.RandomNumberGenerator)">
<summary>
Randomizes the bits in "this" from the specified RNG.
</summary>
<param name="rng">A RNG.</param>
</member>
<member name="M:Mono.Math.BigInteger.randomize">
<summary>
Randomizes the bits in "this" from the default RNG.
</summary>
</member>
<member name="M:Mono.Math.BigInteger.testBit(System.UInt32)">
<summary>
Tests if the specified bit is 1.
</summary>
<param name="bitNum">The bit to test. The least significant bit is 0.</param>
<returns>True if bitNum is set to 1, else false.</returns>
</member>
<member name="M:Mono.Math.BigInteger.Normalize">
<summary>
Normalizes this by setting the length to the actual number of
uints used in data and by setting the sign to Sign.Zero if the
value of this is 0.
</summary>
</member>
<member name="M:Mono.Math.BigInteger.NextHightestPrime(Mono.Math.BigInteger)">
<summary>
Generates the smallest prime >= bi
</summary>
<param name="bi">A BigInteger</param>
<returns>The smallest prime >= bi. More mathematically, if bi is prime: bi, else Prime [PrimePi [bi] + 1].</returns>
</member>
<member name="M:Mono.Math.BigInteger.Incr2">
<summary>
Increments this by two
</summary>
</member>
<member name="T:Mono.Math.BigInteger.Kernel">
<summary>
Low level functions for the BigInteger
</summary>
</member>
<member name="M:Mono.Math.BigInteger.Kernel.AddSameSign(Mono.Math.BigInteger,Mono.Math.BigInteger)">
<summary>
Adds two numbers with the same sign.
</summary>
<param name="bi1">A BigInteger</param>
<param name="bi2">A BigInteger</param>
<returns>bi1 + bi2</returns>
</member>
<member name="M:Mono.Math.BigInteger.Kernel.Compare(Mono.Math.BigInteger,Mono.Math.BigInteger)">
<summary>
Compares two BigInteger
</summary>
<param name="bi1">A BigInteger</param>
<param name="bi2">A BigInteger</param>
<returns>The sign of bi1 - bi2</returns>
</member>
<member name="M:Mono.Math.BigInteger.Kernel.SingleByteDivideInPlace(Mono.Math.BigInteger,System.UInt32)">
<summary>
Performs n / d and n % d in one operation.
</summary>
<param name="n">A BigInteger, upon exit this will hold n / d</param>
<param name="d">The divisor</param>
<returns>n % d</returns>
</member>
<member name="M:Mono.Math.BigInteger.Kernel.Multiply(System.UInt32[],System.UInt32,System.UInt32,System.UInt32[],System.UInt32,System.UInt32,System.UInt32[],System.UInt32)">
<summary>
Multiplies the data in x [xOffset:xOffset+xLen] by
y [yOffset:yOffset+yLen] and puts it into
d [dOffset:dOffset+xLen+yLen].
</summary>
</member>
<member name="M:Mono.Math.BigInteger.Kernel.MultiplyMod2p32pmod(System.UInt32[],System.Int32,System.Int32,System.UInt32[],System.Int32,System.Int32,System.UInt32[],System.Int32,System.Int32)">
<summary>
Multiplies the data in x [xOffset:xOffset+xLen] by
y [yOffset:yOffset+yLen] and puts the low mod words into
d [dOffset:dOffset+mod].
</summary>
</member>
<member name="T:Mono.Math.Prime.ConfidenceFactor">
<summary>
A factor of confidence.
</summary>
</member>
<member name="F:Mono.Math.Prime.ConfidenceFactor.ExtraLow">
<summary>
Only suitable for development use, probability of failure may be greater than 1/2^20.
</summary>
</member>
<member name="F:Mono.Math.Prime.ConfidenceFactor.Low">
<summary>
Suitable only for transactions which do not require forward secrecy. Probability of failure about 1/2^40
</summary>
</member>
<member name="F:Mono.Math.Prime.ConfidenceFactor.Medium">
<summary>
Designed for production use. Probability of failure about 1/2^80.
</summary>
</member>
<member name="F:Mono.Math.Prime.ConfidenceFactor.High">
<summary>
Suitable for sensitive data. Probability of failure about 1/2^160.
</summary>
</member>
<member name="F:Mono.Math.Prime.ConfidenceFactor.ExtraHigh">
<summary>
Use only if you have lots of time! Probability of failure about 1/2^320.
</summary>
</member>
<member name="F:Mono.Math.Prime.ConfidenceFactor.Provable">
<summary>
Only use methods which generate provable primes. Not yet implemented.
</summary>
</member>
<member name="T:Mono.Math.Prime.Generator.NextPrimeFinder">
<summary>
Finds the next prime after a given number.
</summary>
</member>
<member name="M:Mono.Math.Prime.Generator.PrimeGeneratorBase.PostTrialDivisionTests(Mono.Math.BigInteger)">
<summary>
Performs primality tests on bi, assumes trial division has been done.
</summary>
<param name="bi">A BigInteger that has been subjected to and passed trial division</param>
<returns>False if bi is composite, true if it may be prime.</returns>
<remarks>The speed of this method is dependent on Confidence</remarks>
</member>
<member name="M:Mono.Math.Prime.PrimalityTests.RabinMillerTest(Mono.Math.BigInteger,Mono.Math.Prime.ConfidenceFactor)">
<summary>
Probabilistic prime test based on Rabin-Miller's test
</summary>
<param name="bi" type="BigInteger.BigInteger">
<para>
The number to test.
</para>
</param>
<param name="confidence" type="int">
<para>
The number of chosen bases. The test has at least a
1/4^confidence chance of falsely returning True.
</para>
</param>
<returns>
<para>
True if "this" is a strong pseudoprime to randomly chosen bases.
</para>
<para>
False if "this" is definitely NOT prime.
</para>
</returns>
</member>
</members>
</doc>