added demo script
This commit is contained in:
parent
13b493a052
commit
329e643179
540
demo script
Normal file
540
demo script
Normal file
@ -0,0 +1,540 @@
|
|||||||
|
# Wait for TTS queue to be empty
|
||||||
|
while not self.tts_queue.empty():
|
||||||
|
time.sleep(0.1)
|
||||||
|
time.sleep(0.5) # Extra buffer for audio completion
|
||||||
|
```
|
||||||
|
|
||||||
|
**Why this is critical**:
|
||||||
|
- Prevents microphone from recording while AI is speaking
|
||||||
|
- Ensures clean turn-taking in conversation
|
||||||
|
- Avoids audio feedback loops
|
||||||
|
|
||||||
|
---
|
||||||
|
|
||||||
|
## 2. WHY RASPBERRY PI 5 FOR POC?
|
||||||
|
|
||||||
|
### **Strategic Reasons**
|
||||||
|
|
||||||
|
#### **A. Rapid Prototyping**
|
||||||
|
| Aspect | Raspberry Pi 5 | Renesas R-Car V4H |
|
||||||
|
|--------|----------------|-------------------|
|
||||||
|
| **Setup time** | 2-3 hours | 4-6 weeks |
|
||||||
|
| **Development cycle** | Instant code changes | Requires cross-compilation, flashing |
|
||||||
|
| **Debugging** | Full Linux terminal access | Limited debug interfaces |
|
||||||
|
| **Cost** | $80 | $500-800 (development kit) |
|
||||||
|
|
||||||
|
#### **B. Feature Validation**
|
||||||
|
- **Test multilingual support**: Hindi + English switching
|
||||||
|
- **Validate voice quality**: Compare gTTS vs espeak
|
||||||
|
- **Measure user acceptance**: Driver feedback on conversation flow
|
||||||
|
- **Identify edge cases**: Noisy environments, accents, domain terms
|
||||||
|
|
||||||
|
#### **C. Risk Mitigation**
|
||||||
|
```
|
||||||
|
Development Risk = (Automotive hardware complexity) × (LLM integration complexity)
|
||||||
|
```
|
||||||
|
- **Pi 5 isolates LLM integration complexity**: Proves AI works before automotive integration
|
||||||
|
- **Avoids costly hardware mistakes**: If model doesn't work, no expensive R-Car boards wasted
|
||||||
|
- **Validates before procurement**: Prove concept before ordering 100+ R-Car V4H units
|
||||||
|
|
||||||
|
---
|
||||||
|
|
||||||
|
### **Technical Capabilities**
|
||||||
|
|
||||||
|
#### **Specifications Comparison**
|
||||||
|
| Component | Raspberry Pi 5 | Renesas R-Car V4H |
|
||||||
|
|-----------|----------------|-------------------|
|
||||||
|
| **CPU** | 4× Cortex-A76 @ 2.4GHz | 4× Cortex-A76 @ 1.8GHz |
|
||||||
|
| **RAM** | 8 GB LPDDR4X | 8-16 GB LPDDR5 |
|
||||||
|
| **AI Accelerator** | None (CPU only) | 34 TOPS NPU |
|
||||||
|
| **Inference Speed** | 8-12 tokens/sec | 25-35 tokens/sec |
|
||||||
|
| **Power** | 15W peak | 10-15W (more efficient) |
|
||||||
|
| **Cooling** | Small fan | Passive (automotive-grade) |
|
||||||
|
|
||||||
|
#### **Why Pi 5 is "Good Enough" for POC**:
|
||||||
|
1. **Same CPU architecture**: Both use ARM Cortex-A76 cores
|
||||||
|
2. **Runs same software stack**: Identical Whisper, Llama, gTTS code
|
||||||
|
3. **Acceptable latency**: 8-12 tokens/sec feels responsive for demo
|
||||||
|
4. **Proves feasibility**: If it works on Pi 5, definitely works on R-Car V4H
|
||||||
|
|
||||||
|
---
|
||||||
|
|
||||||
|
## 3. WHY RENESAS R-CAR V4H FOR PRODUCTION?
|
||||||
|
|
||||||
|
### **Critical Requirements Pi 5 CANNOT Meet**
|
||||||
|
|
||||||
|
#### **A. Automotive Certification (Deal-breaker)**
|
||||||
|
|
||||||
|
**ISO 26262 Safety Standards**:
|
||||||
|
```
|
||||||
|
ASIL-D (Automotive Safety Integrity Level D)
|
||||||
|
├── Hardware fault detection
|
||||||
|
├── Redundant processing paths
|
||||||
|
├── Deterministic response times
|
||||||
|
├── Temperature range: -40°C to +125°C
|
||||||
|
└── Vibration/shock resistance
|
||||||
|
```
|
||||||
|
|
||||||
|
| Requirement | Raspberry Pi 5 | R-Car V4H |
|
||||||
|
|-------------|----------------|-----------|
|
||||||
|
| **ISO 26262 certified** | ❌ No | ✅ ASIL B/D |
|
||||||
|
| **Operating temp range** | 0°C to 50°C | -40°C to +125°C |
|
||||||
|
| **Mean Time Between Failures** | Consumer-grade | Automotive-grade (15+ years) |
|
||||||
|
| **Vibration resistance** | Not rated | Truck-qualified |
|
||||||
|
| **Legal liability** | Not insurable | OEM-approved |
|
||||||
|
|
||||||
|
**Real-world impact**:
|
||||||
|
- **Volvo cannot deploy Pi 5 in production trucks** (legal/liability issues)
|
||||||
|
- **Insurance won't cover**: Non-automotive hardware in commercial vehicles
|
||||||
|
- **Regulatory failure**: FMCSA/DOT would reject certification
|
||||||
|
|
||||||
|
---
|
||||||
|
|
||||||
|
#### **B. Performance and Efficiency**
|
||||||
|
|
||||||
|
**AI Performance**:
|
||||||
|
```
|
||||||
|
R-Car V4H NPU: 34 TOPS @ 16 TOPS/Watt
|
||||||
|
├── Dedicated AI accelerator (DLA)
|
||||||
|
├── Optimized for INT4/INT8 quantized models
|
||||||
|
├── Parallel execution with CV engines
|
||||||
|
└── Hardware-accelerated attention mechanisms
|
||||||
|
|
||||||
|
Raspberry Pi 5: ~0.5 TOPS (CPU only)
|
||||||
|
├── Software emulation of operations
|
||||||
|
├── Shared CPU resources
|
||||||
|
└── No dedicated AI hardware
|
||||||
|
```
|
||||||
|
|
||||||
|
**Inference Speed Comparison**:
|
||||||
|
| Model | Raspberry Pi 5 | R-Car V4H |
|
||||||
|
|-------|----------------|-----------|
|
||||||
|
| **Llama 3.2-3B (INT4)** | 8-12 tokens/sec | 25-35 tokens/sec |
|
||||||
|
| **First token latency** | 1.5-2.5 seconds | 300-600ms |
|
||||||
|
| **Memory bandwidth** | 17 GB/s | 68 GB/s |
|
||||||
|
| **Power consumption** | 12-15W | 8-12W (more efficient) |
|
||||||
|
|
||||||
|
**User Experience Impact**:
|
||||||
|
- **Pi 5**: Noticeable lag, feels sluggish for real-time assistance
|
||||||
|
- **R-Car V4H**: Near-instant responses, natural conversation flow
|
||||||
|
|
||||||
|
---
|
||||||
|
|
||||||
|
#### **C. Integration with Truck Systems**
|
||||||
|
|
||||||
|
**Automotive Communication Protocols**:
|
||||||
|
```
|
||||||
|
R-Car V4H Native Support:
|
||||||
|
├── CAN-FD (5 Mbps) - Engine control, diagnostics
|
||||||
|
├── LIN (20 kbps) - Climate, lighting, seats
|
||||||
|
├── Ethernet AVB/TSN - High-speed sensor data
|
||||||
|
├── FlexRay - Safety-critical systems
|
||||||
|
└── SOME/IP - Service-oriented communication
|
||||||
|
|
||||||
|
Raspberry Pi 5:
|
||||||
|
└── USB/HAT-based CAN adapters (limited, unreliable)
|
||||||
|
```
|
||||||
|
|
||||||
|
**Why this matters**:
|
||||||
|
- **Direct sensor access**: R-Car V4H reads truck data without external bridges
|
||||||
|
- **Low latency**: CAN messages processed in <1ms (critical for safety)
|
||||||
|
- **Reliability**: Automotive-grade protocols vs consumer USB dongles
|
||||||
|
- **Cost**: No additional interface hardware required
|
||||||
|
|
||||||
|
---
|
||||||
|
|
||||||
|
#### **D. Multi-Tasking Capability**
|
||||||
|
|
||||||
|
**Workload Distribution on R-Car V4H**:
|
||||||
|
```
|
||||||
|
NPU (34 TOPS):
|
||||||
|
├── Llama 3.2-3B inference (15 TOPS)
|
||||||
|
├── Object detection for ADAS (10 TOPS)
|
||||||
|
└── Driver monitoring (5 TOPS)
|
||||||
|
|
||||||
|
Cortex-A76 (4 cores):
|
||||||
|
├── OS and system services
|
||||||
|
├── LLM orchestration
|
||||||
|
└── Network/cloud sync
|
||||||
|
|
||||||
|
Cortex-R52 (3 cores - ASIL D):
|
||||||
|
├── Real-time vehicle control
|
||||||
|
├── Safety monitoring
|
||||||
|
└── Fault detection
|
||||||
|
|
||||||
|
Computer Vision Engines:
|
||||||
|
├── Camera processing (360° view)
|
||||||
|
├── Parking assistance
|
||||||
|
└── Lane detection
|
||||||
|
```
|
||||||
|
|
||||||
|
**Raspberry Pi 5 reality**:
|
||||||
|
- **CPU bottleneck**: Must time-share between LLM and other tasks
|
||||||
|
- **No dedicated safety cores**: Cannot run safety functions in parallel
|
||||||
|
- **Limited I/O**: Insufficient bandwidth for multiple cameras + sensors
|
||||||
|
|
||||||
|
---
|
||||||
|
|
||||||
|
#### **E. Thermal and Power Management**
|
||||||
|
|
||||||
|
**Operating Conditions in Truck Cabin**:
|
||||||
|
```
|
||||||
|
Summer (Phoenix, AZ): +60°C dashboard temperature
|
||||||
|
Winter (Minnesota): -30°C cold start
|
||||||
|
Vibration: Constant road vibration, potholes
|
||||||
|
Humidity: 10-95% (rain, humidity)
|
||||||
|
Dust: High particulate exposure
|
||||||
|
```
|
||||||
|
|
||||||
|
| Aspect | Raspberry Pi 5 | R-Car V4H |
|
||||||
|
|--------|----------------|-----------|
|
||||||
|
| **Cooling** | Active fan (mechanical failure point) | Passive heatsink (no moving parts) |
|
||||||
|
| **Thermal throttling** | Starts at 80°C | Operates to 125°C |
|
||||||
|
| **Cold boot** | May fail <0°C | Guaranteed -40°C start |
|
||||||
|
| **Dust ingress** | Open vents (IP20) | Sealed enclosure (IP67) |
|
||||||
|
| **MTBF** | ~3-5 years | 15+ years |
|
||||||
|
|
||||||
|
---
|
||||||
|
|
||||||
|
### **F. Cost Analysis (Total Cost of Ownership)**
|
||||||
|
|
||||||
|
**Per-Truck Comparison**:
|
||||||
|
|
||||||
|
| Component | Raspberry Pi 5 Solution | R-Car V4H Solution |
|
||||||
|
|-----------|-------------------------|---------------------|
|
||||||
|
| **Hardware** | $80 + $50 (interfaces) = $130 | $500 (integrated) |
|
||||||
|
| **Integration** | $200 (custom interfaces) | $50 (native support) |
|
||||||
|
| **Certification** | N/A (not possible) | $5000 (one-time, amortized) |
|
||||||
|
| **Support/Warranty** | None (consumer product) | 3-year automotive warranty |
|
||||||
|
| **Replacement rate** | 30-40% over 5 years | <5% over 5 years |
|
||||||
|
| **Insurance impact** | +20% premium (non-certified) | Standard coverage |
|
||||||
|
|
||||||
|
**5-Year TCO (per truck)**:
|
||||||
|
- **Pi 5**: $130 + $200 + $0 + ($130 × 0.35 × 2) = **$421** + **uninsurable risk**
|
||||||
|
- **R-Car V4H**: $500 + $50 + $5 = **$555** + **full liability coverage**
|
||||||
|
|
||||||
|
**Fleet of 1000 trucks**:
|
||||||
|
- Pi 5 savings: **$134,000** (upfront)
|
||||||
|
- **But**: No regulatory approval = **$0 revenue** (cannot deploy)
|
||||||
|
- R-Car V4H cost: **$555,000** = **Approved for production = Revenue-generating**
|
||||||
|
|
||||||
|
---
|
||||||
|
|
||||||
|
## 4. DEMONSTRATION SCRIPT FOR VOLVO CTO
|
||||||
|
|
||||||
|
### **Opening (2 minutes)**
|
||||||
|
|
||||||
|
> "Good morning. Today I'll demonstrate an AI-powered voice assistant designed specifically for truck drivers. This proof-of-concept runs on a Raspberry Pi 5, and I'll explain why we're using this platform for demonstration and why the Renesas R-Car V4H is essential for production deployment in Volvo trucks."
|
||||||
|
|
||||||
|
---
|
||||||
|
|
||||||
|
### **Live Demo (5-7 minutes)**
|
||||||
|
|
||||||
|
#### **Scenario 1: English Driver Assistance**
|
||||||
|
```
|
||||||
|
You: [Press Enter] "What's the best route from Bangalore to Chennai avoiding tolls?"
|
||||||
|
|
||||||
|
System: [Within 3 seconds]
|
||||||
|
"The best toll-free route is via NH 44 through Vellore. It's approximately
|
||||||
|
346 kilometers and takes about 7 hours. However, this route has more traffic
|
||||||
|
signals. The toll route via NH 48 saves about 45 minutes but costs ₹890 in
|
||||||
|
tolls."
|
||||||
|
```
|
||||||
|
|
||||||
|
**Point out to CTO**:
|
||||||
|
- **Natural language understanding**: No rigid commands, conversational query
|
||||||
|
- **Context-aware response**: Considers trade-offs (time vs cost)
|
||||||
|
- **Streaming speech**: Notice how you hear response while AI is still thinking
|
||||||
|
|
||||||
|
---
|
||||||
|
|
||||||
|
#### **Scenario 2: Hindi Language Support**
|
||||||
|
```
|
||||||
|
You: "मेरी गाड़ी का इंजन लाइट क्यों जल रही है?"
|
||||||
|
(Why is my engine light on?)
|
||||||
|
|
||||||
|
System:
|
||||||
|
"इंजन लाइट कई कारणों से जल सकती है। सबसे आम कारण हैं: ऑक्सीजन सेंसर की
|
||||||
|
समस्या, लूज फ्यूल कैप, या कैटेलिटिक कन्वर्टर में खराबी। मैं सलाह दूंगा
|
||||||
|
कि आप जल्द से जल्द नजदीकी सर्विस सेंटर पर जाएं।"
|
||||||
|
```
|
||||||
|
|
||||||
|
**Point out to CTO**:
|
||||||
|
- **Multilingual capability**: Critical for Indian market (70% Hindi-speaking drivers)
|
||||||
|
- **Technical accuracy**: Understands automotive terminology in Hindi
|
||||||
|
- **Safety-first responses**: Recommends service center visit
|
||||||
|
|
||||||
|
---
|
||||||
|
|
||||||
|
#### **Scenario 3: Voice Activity Detection**
|
||||||
|
```
|
||||||
|
You: [Press Enter, start speaking] "How do I—" [pause 2 seconds]
|
||||||
|
|
||||||
|
System: [Automatically stops recording after silence]
|
||||||
|
```
|
||||||
|
|
||||||
|
**Point out to CTO**:
|
||||||
|
- **Hands-free operation**: No button presses while driving
|
||||||
|
- **Smart silence detection**: Doesn't cut off mid-sentence, doesn't record forever
|
||||||
|
- **Cabin noise handling**: Works in diesel engine environment (simulated)
|
||||||
|
|
||||||
|
---
|
||||||
|
|
||||||
|
#### **Scenario 4: Offline Capability**
|
||||||
|
```
|
||||||
|
You: [Disconnect WiFi/Ethernet] "What is the penalty for overweight cargo in Karnataka?"
|
||||||
|
|
||||||
|
System: [Still responds without internet]
|
||||||
|
"In Karnataka, overweight penalties are calculated per excess ton..."
|
||||||
|
```
|
||||||
|
|
||||||
|
**Point out to CTO**:
|
||||||
|
- **Zero cloud dependency**: Works in remote areas without connectivity
|
||||||
|
- **Data privacy**: No driver conversations sent to external servers
|
||||||
|
- **Latency**: No network delays, instant processing
|
||||||
|
|
||||||
|
---
|
||||||
|
|
||||||
|
### **Technical Deep-Dive (3-5 minutes)**
|
||||||
|
|
||||||
|
#### **Architecture Walkthrough**
|
||||||
|
```
|
||||||
|
[Show diagram on screen or whiteboard]
|
||||||
|
|
||||||
|
Driver Voice
|
||||||
|
↓
|
||||||
|
┌─────────────────────────────────────┐
|
||||||
|
│ Whisper STT (Offline) │
|
||||||
|
│ - Multilingual: English + Hindi │
|
||||||
|
│ - Noise cancellation │
|
||||||
|
│ - ~2 sec latency │
|
||||||
|
└─────────────────────────────────────┘
|
||||||
|
↓
|
||||||
|
┌─────────────────────────────────────┐
|
||||||
|
│ Llama 3.2-3B (Local Inference) │
|
||||||
|
│ - 3 billion parameters │
|
||||||
|
│ - Truck-specific context │
|
||||||
|
│ - Streaming output │
|
||||||
|
└─────────────────────────────────────┘
|
||||||
|
↓
|
||||||
|
┌─────────────────────────────────────┐
|
||||||
|
│ gTTS (Cached, Natural Voice) │
|
||||||
|
│ - Human-like speech │
|
||||||
|
│ - Offline after first download │
|
||||||
|
│ - Male/Female voice options │
|
||||||
|
└─────────────────────────────────────┘
|
||||||
|
↓
|
||||||
|
Driver Hears Response
|
||||||
|
```
|
||||||
|
|
||||||
|
---
|
||||||
|
|
||||||
|
#### **Current Platform: Raspberry Pi 5**
|
||||||
|
|
||||||
|
> "We chose Raspberry Pi 5 for this proof-of-concept for three strategic reasons:"
|
||||||
|
|
||||||
|
**1. Rapid Development Cycle**
|
||||||
|
- **Setup**: 2-3 hours vs 4-6 weeks for automotive hardware
|
||||||
|
- **Iteration speed**: Code changes deploy instantly
|
||||||
|
- **Debugging**: Full Linux environment with standard tools
|
||||||
|
|
||||||
|
**2. Cost-Effective Validation**
|
||||||
|
- **Hardware cost**: $80 vs $500-800 for R-Car development kit
|
||||||
|
- **Risk mitigation**: Validate AI concept before expensive procurement
|
||||||
|
- **Fail-fast approach**: If concept doesn't work, minimal investment lost
|
||||||
|
|
||||||
|
**3. Software Compatibility**
|
||||||
|
- **Same ARM architecture**: Both Pi 5 and R-Car use Cortex-A76 cores
|
||||||
|
- **Same software stack**: This exact code will run on R-Car V4H
|
||||||
|
- **Portable models**: Llama 3.2, Whisper, gTTS work identically
|
||||||
|
|
||||||
|
> "However, while Pi 5 is perfect for proving the concept, it's fundamentally unsuitable for production deployment in Volvo trucks. Let me explain why..."
|
||||||
|
|
||||||
|
---
|
||||||
|
|
||||||
|
#### **Why Renesas R-Car V4H is Non-Negotiable**
|
||||||
|
|
||||||
|
##### **Reason 1: Automotive Certification (Legal Requirement)**
|
||||||
|
```
|
||||||
|
ISO 26262 Safety Pyramid:
|
||||||
|
|
||||||
|
ASIL-D (Highest) ← R-Car V4H certified here
|
||||||
|
├── Safety-critical functions
|
||||||
|
├── Guaranteed response times
|
||||||
|
└── Hardware fault tolerance
|
||||||
|
|
||||||
|
ASIL-C
|
||||||
|
ASIL-B
|
||||||
|
ASIL-A
|
||||||
|
QM (No safety) ← Raspberry Pi here (consumer device)
|
||||||
|
```
|
||||||
|
|
||||||
|
> "**Volvo cannot legally deploy Raspberry Pi in production trucks.** It lacks:
|
||||||
|
> - ISO 26262 automotive safety certification
|
||||||
|
> - Operating temperature range (-40°C to +125°C)
|
||||||
|
> - Vibration and shock resistance ratings
|
||||||
|
> - MTBF guarantees for 15-year vehicle lifespan
|
||||||
|
>
|
||||||
|
> **Even if Pi 5 performed better, it would never pass regulatory approval.**"
|
||||||
|
|
||||||
|
---
|
||||||
|
|
||||||
|
##### **Reason 2: Performance and Efficiency**
|
||||||
|
|
||||||
|
**Side-by-side comparison**:
|
||||||
|
|
||||||
|
| Metric | Raspberry Pi 5 (Demo) | R-Car V4H (Production) |
|
||||||
|
|--------|----------------------|------------------------|
|
||||||
|
| **AI compute** | 0.5 TOPS (CPU) | 34 TOPS (NPU) |
|
||||||
|
| **Inference speed** | 8-12 tokens/sec | 25-35 tokens/sec |
|
||||||
|
| **First token** | 1.5-2.5 seconds | 300-600ms |
|
||||||
|
| **Power efficiency** | 15W | 8-12W (50% better) |
|
||||||
|
| **User experience** | Acceptable for demo | Production-ready smooth |
|
||||||
|
|
||||||
|
> "Notice the demo response time? It's acceptable for proving the concept, but drivers would find it sluggish in daily use. R-Car V4H's dedicated AI accelerator delivers **3x faster inference** while using **less power**."
|
||||||
|
|
||||||
|
---
|
||||||
|
|
||||||
|
##### **Reason 3: Vehicle Integration**
|
||||||
|
|
||||||
|
**What R-Car V4H provides that Pi 5 cannot**:
|
||||||
|
```
|
||||||
|
R-Car V4H Native Interfaces:
|
||||||
|
├── CAN-FD ──────────► Engine diagnostics, fault codes
|
||||||
|
├── LIN ─────────────► Climate, lighting control
|
||||||
|
├── Ethernet AVB ────► Camera feeds, sensor fusion
|
||||||
|
├── FlexRay ─────────► Safety-critical systems
|
||||||
|
└── SOME/IP ─────────► Service mesh (diagnostics ↔ cloud)
|
||||||
|
|
||||||
|
Raspberry Pi 5:
|
||||||
|
└── USB CAN adapter (unreliable, high latency, consumer-grade)
|
||||||
|
```
|
||||||
|
|
||||||
|
> "To make Pi 5 work in a real truck, we'd need:
|
||||||
|
> - External CAN adapters ($150-300)
|
||||||
|
> - Custom interface boards ($200-500)
|
||||||
|
> - Signal conversion hardware
|
||||||
|
> - Extensive testing and certification (impossible for consumer hardware)
|
||||||
|
>
|
||||||
|
> **R-Car V4H has all these interfaces built-in, automotive-certified, and tested.**"
|
||||||
|
|
||||||
|
---
|
||||||
|
|
||||||
|
##### **Reason 4: Multi-Tasking Architecture**
|
||||||
|
|
||||||
|
**R-Car V4H Workload Distribution**:
|
||||||
|
```
|
||||||
|
┌─────────────────────────────────────┐
|
||||||
|
│ NPU (34 TOPS) │
|
||||||
|
├─────────────────────────────────────┤
|
||||||
|
│ • LLM inference (15 TOPS) │
|
||||||
|
│ • ADAS object detection (10 TOPS) │
|
||||||
|
│ • Driver monitoring (5 TOPS) │
|
||||||
|
│ • Spare capacity (4 TOPS) │
|
||||||
|
└─────────────────────────────────────┘
|
||||||
|
|
||||||
|
┌─────────────────────────────────────┐
|
||||||
|
│ Cortex-A76 (4 cores @ 1.8GHz) │
|
||||||
|
├─────────────────────────────────────┤
|
||||||
|
│ • OS and services │
|
||||||
|
│ • LLM orchestration │
|
||||||
|
│ • Network communication │
|
||||||
|
└─────────────────────────────────────┘
|
||||||
|
|
||||||
|
┌─────────────────────────────────────┐
|
||||||
|
│ Cortex-R52 (3 cores - ASIL D) │
|
||||||
|
├─────────────────────────────────────┤
|
||||||
|
│ • Real-time vehicle control │
|
||||||
|
│ • Safety monitoring │
|
||||||
|
│ • Fault detection │
|
||||||
|
└─────────────────────────────────────┘
|
||||||
|
```
|
||||||
|
|
||||||
|
> "**Pi 5 has only 4 CPU cores** that must handle everything. **R-Car V4H has 10 dedicated cores** plus AI accelerators, allowing:
|
||||||
|
> - LLM assistant (this demo)
|
||||||
|
> - ADAS features (lane keeping, collision warning)
|
||||||
|
> - Driver monitoring (fatigue detection)
|
||||||
|
> - All running simultaneously without interference"
|
||||||
|
|
||||||
|
---
|
||||||
|
|
||||||
|
##### **Reason 5: Thermal Management**
|
||||||
|
|
||||||
|
**Real-world truck cabin conditions**:
|
||||||
|
```
|
||||||
|
Phoenix, Arizona (Summer): +60°C dashboard
|
||||||
|
Minnesota (Winter): -30°C cold start
|
||||||
|
Typical vibration: 5-10 Hz constant
|
||||||
|
Dust exposure: High (construction, desert routes)
|
||||||
|
```
|
||||||
|
|
||||||
|
| Aspect | Raspberry Pi 5 | R-Car V4H |
|
||||||
|
|--------|----------------|-----------|
|
||||||
|
| **Operating range** | 0°C to 50°C | -40°C to +125°C |
|
||||||
|
| **Cooling method** | Active fan (fails in dust) | Passive heatsink |
|
||||||
|
| **Thermal throttling** | Starts at 80°C | Operates to 125°C |
|
||||||
|
| **MTBF** | 3-5 years (consumer) | 15+ years (automotive) |
|
||||||
|
| **Ingress protection** | IP20 (no dust/water) | IP67 (sealed) |
|
||||||
|
|
||||||
|
> "**In a Phoenix summer, Pi 5 would thermal-throttle and crash.** R-Car V4H is designed for these extremes with passive cooling—no mechanical fans to fail from dust or vibration."
|
||||||
|
|
||||||
|
---
|
||||||
|
|
||||||
|
### **Cost Justification (2 minutes)**
|
||||||
|
|
||||||
|
**"But R-Car V4H costs 6x more than Pi 5..."**
|
||||||
|
|
||||||
|
> "Let's look at total cost of ownership for 1000 trucks over 5 years:"
|
||||||
|
|
||||||
|
**Raspberry Pi 5 Route**:
|
||||||
|
```
|
||||||
|
Hardware: $80 × 1000 = $80,000
|
||||||
|
Interface adapters: $300 × 1000 = $300,000
|
||||||
|
Integration labor: $500 × 1000 = $500,000
|
||||||
|
Replacement (35%): $130 × 350 = $45,500
|
||||||
|
Total: $925,500
|
||||||
|
|
||||||
|
Result: NOT CERTIFIABLE = $0 revenue (cannot deploy)
|
||||||
|
```
|
||||||
|
|
||||||
|
**R-Car V4H Route**:
|
||||||
|
```
|
||||||
|
Hardware: $500 × 1000 = $500,000
|
||||||
|
Integration: $50 × 1000 = $50,000
|
||||||
|
Certification: $50,000 (one-time)
|
||||||
|
Replacement (5%): $550 × 50 = $27,500
|
||||||
|
Total: $627,500
|
||||||
|
|
||||||
|
Result: CERTIFIED = Revenue-generating fleet
|
||||||
|
```
|
||||||
|
|
||||||
|
> "**R-Car V4H saves $298,000** over 5 years while being the only certifiable option. The choice isn't 'expensive vs cheap'—it's **'deployable vs non-deployable.'**"
|
||||||
|
|
||||||
|
---
|
||||||
|
|
||||||
|
### **Deployment Roadmap (2 minutes)**
|
||||||
|
```
|
||||||
|
PHASE 1: POC (CURRENT) [2-3 months]
|
||||||
|
├── Platform: Raspberry Pi 5
|
||||||
|
├── Goal: Prove AI concept works
|
||||||
|
├── Deliverable: This demo + feasibility report
|
||||||
|
└── Status: Complete ✓
|
||||||
|
|
||||||
|
PHASE 2: MVP Development [4-6 months]
|
||||||
|
├── Platform: R-Car V4H development board
|
||||||
|
├── Goals:
|
||||||
|
│ ├── Port code to R-Car V4H
|
||||||
|
│ ├── Integrate with Volvo CAN bus
|
||||||
|
│ ├── Optimize for NPU acceleration (3x speedup)
|
||||||
|
│ ├── Add 5-10 truck-specific use cases
|
||||||
|
│ └── Pilot in 3-5 test trucks
|
||||||
|
└── Deliverable: Pre-production system
|
||||||
|
|
||||||
|
PHASE 3: Production Deployment [6-12 months]
|
||||||
|
├── Platform: R-Car V4H (production units)
|
||||||
|
├── Goals:
|
||||||
|
│ ├── Complete ISO 26262 certification
|
||||||
|
│ ├── Fleet-wide OTA update infrastructure
|
||||||
|
│ ├── 15-20 full feature set
|
||||||
|
│ └── Phased rollout to full fleet
|
||||||
|
└── Deliverable: Production-ready system
|
||||||
Loading…
Reference in New Issue
Block a user