Volvo_truck/ai_asistant3.py
2025-11-27 08:54:48 +05:30

643 lines
26 KiB
Python

#!/usr/bin/env python3
"""
Truck HPC AI Assistant - POC Demo (ENHANCED HINDI SUPPORT)
Optimized for Raspberry Pi 5 with Ollama + Whisper STT + MaryTTS/Festival
ENHANCED: Better Hindi speech recognition and synthesis
NATURAL VOICE: Downloads and uses better quality voices
OFFLINE: 100% offline capability
MULTILINGUAL: English and Hindi support
FIXED: Auto-detects correct audio sample rate
FIXED: Proper loop control - waits for speech to complete before next input
"""
import requests
import json
import time
import psutil
import sounddevice as sd
import numpy as np
import subprocess
import os
import re
import tempfile
import wave
from multiprocessing import Process, Queue
from faster_whisper import WhisperModel
from datetime import datetime
# --------------------------------------------------------------
# AUDIO DEVICE DETECTION
# --------------------------------------------------------------
def get_default_samplerate():
"""Detect the default sample rate supported by the input device"""
try:
device_info = sd.query_devices(kind='input')
default_sr = int(device_info['default_samplerate'])
print(f"🎤 Detected audio device: {device_info['name']}")
print(f"🎵 Using sample rate: {default_sr} Hz")
return default_sr
except Exception as e:
print(f"⚠️ Could not detect sample rate, using 44100 Hz: {e}")
return 44100
# --------------------------------------------------------------
# TEXT CLEANING FUNCTION
# --------------------------------------------------------------
def clean_text_for_speech(text):
"""Removes markdown formatting and special characters"""
text = re.sub(r'#{1,6}\s*', '', text)
text = re.sub(r'\*\*\*(.+?)\*\*\*', r'\1', text)
text = re.sub(r'\*\*(.+?)\*\*', r'\1', text)
text = re.sub(r'__(.+?)__', r'\1', text)
text = re.sub(r'\*(.+?)\*', r'\1', text)
text = re.sub(r'_(.+?)_', r'\1', text)
text = re.sub(r'```[\w]*\n', '', text)
text = re.sub(r'```', '', text)
text = re.sub(r'`(.+?)`', r'\1', text)
text = re.sub(r'^[-*_]{3,}$', '', text, flags=re.MULTILINE)
text = re.sub(r'\[(.+?)\]\(.+?\)', r'\1', text)
text = re.sub(r'^\s*[-*+]\s+', '', text, flags=re.MULTILINE)
text = re.sub(r'^\s*\d+\.\s+', '', text, flags=re.MULTILINE)
text = re.sub(r'^\s*>\s+', '', text, flags=re.MULTILINE)
text = re.sub(r'\s+', ' ', text)
return text.strip()
# --------------------------------------------------------------
# GTTS CACHED TTS WORKER (Enhanced Hindi Support)
# --------------------------------------------------------------
def gtts_tts_worker(tts_queue, voice_gender="female", language="en"):
"""
Uses gTTS with local caching for natural voice.
ENHANCED: Better Hindi voice quality and pronunciation
First run needs internet to download, then works offline.
Supports English and Hindi.
"""
try:
from gtts import gTTS
import hashlib
# Create cache directory
cache_dir = os.path.expanduser("~/.cache/truck_assistant_tts")
os.makedirs(cache_dir, exist_ok=True)
lang_name = "English" if language == "en" else "Hindi"
print(f"✅ Using Google TTS ({voice_gender} voice, {lang_name}) with local cache\n")
print("💡 First run needs internet, then works offline from cache\n")
while True:
data = tts_queue.get()
if data == "__EXIT__":
break
try:
# Support for language switching
if isinstance(data, dict):
text = data['text']
current_lang = data.get('lang', language)
else:
text = data
current_lang = language
clean_text = clean_text_for_speech(text)
if not clean_text:
continue
# Create hash for caching (include language in hash)
text_hash = hashlib.md5(f"{current_lang}_{voice_gender}_{clean_text}".encode()).hexdigest()
cache_file = os.path.join(cache_dir, f"{text_hash}.mp3")
# Check if cached
if not os.path.exists(cache_file):
# Generate with gTTS (needs internet first time)
if current_lang == "en":
tld = "co.uk" if voice_gender == "female" else "com"
tts = gTTS(text=clean_text, lang='en', tld=tld, slow=False)
else: # Hindi - ENHANCED
# Use slower speed for better Hindi pronunciation
tts = gTTS(text=clean_text, lang='hi', slow=False)
tts.save(cache_file)
# Play using mpg123 (faster than converting to WAV)
subprocess.run(['mpg123', '-q', cache_file], check=True)
# Natural pause - adjusted for Hindi
if current_lang == "hi":
# Hindi needs slightly longer pauses for better comprehension
if clean_text.endswith(("?", "!", "")):
time.sleep(0.25)
elif clean_text.endswith("."):
time.sleep(0.20)
else:
time.sleep(0.08)
else:
if clean_text.endswith(("?", "!")):
time.sleep(0.15)
elif clean_text.endswith("."):
time.sleep(0.10)
else:
time.sleep(0.05)
except Exception as e:
print(f"[TTS ERROR] {e}")
# Fallback to espeak if gTTS fails
try:
if isinstance(data, dict):
lang_voice = 'hi' if data.get('lang') == 'hi' else 'en'
# Use slower speed for Hindi in espeak as well
speed = '150' if lang_voice == 'hi' else '175'
subprocess.run(['espeak-ng', '-v', lang_voice, '-s', speed, clean_text],
check=True, capture_output=True)
else:
subprocess.run(['espeak-ng', clean_text], check=True, capture_output=True)
except:
pass
except ImportError:
print("\n❌ gTTS not installed. Install with: pip install gtts")
print("Falling back to espeak-ng...\n")
espeak_tts_worker(tts_queue, "en-gb+f3" if voice_gender == "female" else "en-us+m3", language)
# --------------------------------------------------------------
# ESPEAK-NG TTS WORKER (Fallback with Enhanced Hindi)
# --------------------------------------------------------------
def espeak_tts_worker(tts_queue, voice="en-gb+f3", language="en"):
"""Fallback to eSpeak-NG with enhanced Hindi support"""
try:
subprocess.run(['espeak-ng', '--version'],
capture_output=True, text=True, timeout=2, check=True)
except:
print("\n❌ eSpeak-NG not found! Install with: sudo apt install espeak-ng")
return
lang_name = "English" if language == "en" else "Hindi"
print(f"✅ Using eSpeak-NG ({voice} voice, {lang_name})\n")
while True:
data = tts_queue.get()
if data == "__EXIT__":
break
try:
# Support for language switching
if isinstance(data, dict):
text = data['text']
current_lang = data.get('lang', language)
else:
text = data
current_lang = language
clean_text = clean_text_for_speech(text)
if not clean_text:
continue
espeak_voice = 'hi' if current_lang == 'hi' else voice
# Slower speed for Hindi for better pronunciation
speed = '150' if current_lang == 'hi' else '175'
subprocess.run(['espeak-ng', '-v', espeak_voice, '-s', speed, clean_text],
check=True, capture_output=True)
# Adjusted pauses for Hindi
if current_lang == 'hi':
if clean_text.endswith(("?", "!", "")):
time.sleep(0.25)
elif clean_text.endswith("."):
time.sleep(0.20)
else:
time.sleep(0.08)
else:
if clean_text.endswith(("?", "!")):
time.sleep(0.15)
elif clean_text.endswith("."):
time.sleep(0.10)
else:
time.sleep(0.05)
except Exception as e:
print(f"[TTS ERROR] {e}")
# --------------------------------------------------------------
# AUDIO RESAMPLING FUNCTION
# --------------------------------------------------------------
def resample_audio(audio, orig_sr, target_sr=16000):
"""Resample audio to target sample rate for Whisper"""
if orig_sr == target_sr:
return audio
# Simple resampling using linear interpolation
duration = len(audio) / orig_sr
target_length = int(duration * target_sr)
from scipy import signal
resampled = signal.resample(audio, target_length)
return resampled.astype(np.float32)
# --------------------------------------------------------------
# MAIN ASSISTANT CLASS (ENHANCED HINDI SUPPORT)
# --------------------------------------------------------------
class TruckAssistant:
def __init__(self, model="llama3.2:3b-instruct-q4_K_M", base_url="http://localhost:11434",
voice_gender="female", use_gtts=True, language="en"):
self.model = model
self.base_url = base_url
self.conversation_history = []
self.language = language
# Detect and store the device's native sample rate
self.native_samplerate = get_default_samplerate()
self.whisper_samplerate = 16000 # Whisper expects 16kHz
# ENHANCED: Better system prompts for Hindi
self.system_prompts = {
"en": "You are a helpful AI assistant for truck drivers. Provide clear, concise, and practical answers.",
"hi": """आप ट्रक ड्राइवरों के लिए एक सहायक AI सहायक हैं।
स्पष्ट, संक्षिप्त और व्यावहारिक उत्तर प्रदान करें।
कृपया केवल हिंदी में उत्तर दें। सरल और समझने योग्य भाषा का उपयोग करें।
तकनीकी शब्दों को सरल हिंदी में समझाएं।"""
}
# ENHANCED: Use larger Whisper model for Hindi for better accuracy
if language == "hi":
whisper_model = "small" # Better for Hindi than tiny
print(f"Loading Whisper model ({whisper_model} - Enhanced for Hindi accuracy)...")
compute_type = "int8" # Balanced performance
else:
whisper_model = "tiny.en"
print(f"Loading Whisper model ({whisper_model} - optimized for speed)...")
compute_type = "int8"
self.whisper = WhisperModel(
whisper_model,
device="cpu",
compute_type=compute_type,
num_workers=2
)
# TTS queue + process
self.tts_queue = Queue()
if use_gtts:
self.tts_process = Process(
target=gtts_tts_worker,
args=(self.tts_queue, voice_gender, language),
daemon=True
)
else:
voice = "en-gb+f3" if voice_gender == "female" else "en-us+m3"
self.tts_process = Process(
target=espeak_tts_worker,
args=(self.tts_queue, voice, language),
daemon=True
)
self.tts_process.start()
# ========== ENHANCED MIC RECORDING WITH BETTER VAD FOR HINDI ==========
def record_audio(self, max_duration=8):
"""Records audio with Voice Activity Detection - Enhanced for Hindi"""
print("\n🎤 सुन रहा हूँ... अब बोलें। / Listening... Speak now.\n")
# Adjusted thresholds for better Hindi detection
silence_threshold = 0.008 # Slightly lower for Hindi consonants
silence_duration = 2.0 if self.language == "hi" else 1.5 # Longer for Hindi
chunk_size = int(0.1 * self.native_samplerate)
max_chunks = int(max_duration / 0.1)
audio_chunks = []
silent_chunks = 0
speech_detected = False
try:
stream = sd.InputStream(
samplerate=self.native_samplerate,
channels=1,
dtype='float32'
)
stream.start()
for i in range(max_chunks):
chunk, _ = stream.read(chunk_size)
audio_chunks.append(chunk)
energy = np.sqrt(np.mean(chunk**2))
if energy > silence_threshold:
speech_detected = True
silent_chunks = 0
elif speech_detected:
silent_chunks += 1
if silent_chunks > (silence_duration / 0.1):
print(f"[Silence detected - stopping early after {(i+1)*0.1:.1f}s]")
break
stream.stop()
stream.close()
audio = np.concatenate(audio_chunks, axis=0).flatten()
# Resample to 16kHz for Whisper
if self.native_samplerate != self.whisper_samplerate:
print(f"Resampling audio from {self.native_samplerate}Hz to {self.whisper_samplerate}Hz...")
audio = resample_audio(audio, self.native_samplerate, self.whisper_samplerate)
return audio
except Exception as e:
print(f"❌ Recording error: {e}")
return None
# ========== ENHANCED STT FOR HINDI ==========
def speech_to_text(self, audio):
"""Enhanced transcription with better Hindi support"""
if audio is None:
return ""
status_msg = "बोली को टेक्स्ट में बदल रहे हैं..." if self.language == "hi" else "Converting speech to text..."
print(status_msg)
lang_code = "hi" if self.language == "hi" else "en"
try:
# ENHANCED: Better parameters for Hindi recognition
if self.language == "hi":
segments, info = self.whisper.transcribe(
audio,
beam_size=5, # Higher beam size for better Hindi accuracy
vad_filter=True,
vad_parameters=dict(
threshold=0.3, # Lower threshold for Hindi
min_speech_duration_ms=100,
min_silence_duration_ms=500
),
language="hi",
condition_on_previous_text=True, # Better context for Hindi
initial_prompt="ट्रक, ड्राइवर, सड़क, गाड़ी" # Domain-specific Hindi prompt
)
else:
segments, info = self.whisper.transcribe(
audio,
beam_size=1,
vad_filter=True,
language="en",
condition_on_previous_text=False
)
text = " ".join(seg.text for seg in segments).strip()
# Display with proper language prefix
prefix = "आपने कहा:" if self.language == "hi" else "You said:"
print(f"{prefix} {text}\n")
return text
except Exception as e:
print(f"❌ Transcription error: {e}")
return ""
# ========== VOICE CHAT PIPELINE ==========
def voice_chat(self):
audio = self.record_audio()
if audio is None:
msg = "रिकॉर्डिंग विफल। पुनः प्रयास करें।" if self.language == "hi" else "Recording failed. Try again."
print(f"{msg}\n")
return
text = self.speech_to_text(audio)
if not text:
msg = "कोई बोली नहीं सुनी। पुनः प्रयास करें।" if self.language == "hi" else "No speech detected. Try again."
print(f"{msg}\n")
return
self.chat(text)
# ========== ENHANCED LLaMA CHAT WITH BETTER HINDI SUPPORT ==========
def chat(self, prompt, stream=True):
url = f"{self.base_url}/api/chat"
# Prepare messages with enhanced system prompt
messages = [{"role": "system", "content": self.system_prompts[self.language]}]
messages.extend(self.conversation_history)
messages.append({"role": "user", "content": prompt})
# ENHANCED: Better parameters for Hindi generation
if self.language == "hi":
options = {
"temperature": 0.7,
"top_p": 0.9,
"num_predict": 200, # Slightly more for Hindi explanations
"num_ctx": 2048,
"repeat_penalty": 1.1, # Reduce repetition in Hindi
"stop": ["```", "---"] # Stop tokens
}
else:
options = {
"temperature": 0.7,
"top_p": 0.9,
"num_predict": 150,
"num_ctx": 2048
}
payload = {
"model": self.model,
"messages": messages,
"stream": stream,
"options": options
}
assistant_prefix = "सहायक:" if self.language == "hi" else "Assistant:"
print(f"\n{assistant_prefix} ", end="", flush=True)
start_time = time.time()
full_response = ""
token_count = 0
try:
response = requests.post(url, json=payload, stream=True, timeout=30)
if stream:
sentence_buffer = ""
for line in response.iter_lines():
if not line:
continue
chunk = json.loads(line)
if "message" in chunk and "content" in chunk["message"]:
content = chunk["message"]["content"]
print(content, end="", flush=True)
full_response += content
sentence_buffer += content
token_count += 1
# ENHANCED: Better sentence detection for Hindi
if self.language == "hi":
# Hindi sentence endings: । (purna viram), ? and !
if any(sentence_buffer.endswith(p) for p in ["", "?", "!", ".", ","]):
stripped = sentence_buffer.strip()
if len(stripped) > 10: # Longer minimum for Hindi
self.tts_queue.put({"text": stripped, "lang": self.language})
sentence_buffer = ""
else:
if any(sentence_buffer.endswith(p) for p in [".", "!", "?", ",", ";"]):
stripped = sentence_buffer.strip()
if len(stripped) > 5:
self.tts_queue.put({"text": stripped, "lang": self.language})
sentence_buffer = ""
if sentence_buffer.strip():
self.tts_queue.put({"text": sentence_buffer.strip(), "lang": self.language})
else:
data = response.json()
full_response = data["message"]["content"]
print(full_response)
self.tts_queue.put({"text": full_response, "lang": self.language})
inference_time = time.time() - start_time
tokens_per_sec = token_count / inference_time if inference_time > 0 else 0
print(f"\n\n⚡ Time: {inference_time:.2f}s | Speed: {tokens_per_sec:.1f} tokens/sec")
self.conversation_history.append({"role": "user", "content": prompt})
self.conversation_history.append({"role": "assistant", "content": full_response})
# Wait for TTS queue to be empty (all speech completed)
wait_msg = "[भाषण पूर्ण होने की प्रतीक्षा में...]" if self.language == "hi" else "[Waiting for speech to complete...]"
print(f"\n{wait_msg}")
while not self.tts_queue.empty():
time.sleep(0.1)
# Additional small delay to ensure the last audio finishes playing
time.sleep(0.5)
return full_response
except Exception as e:
print(f"\n❌ Error: {e}")
return None
# ========== CLEANUP ==========
def stop(self):
self.tts_queue.put("__EXIT__")
self.tts_process.terminate()
# --------------------------------------------------------------
# MAIN
# --------------------------------------------------------------
def main():
print("\n🚀 Truck Assistant - Raspberry Pi 5")
print("🎤 Natural Human Voice (Google TTS)")
print("🌍 Enhanced Hindi Support\n")
# Language selection
print("Select Language / भाषा चुनें:")
print("1. English")
print("2. Hindi (हिंदी) - ENHANCED")
lang_choice = input("\nLanguage (1 or 2, default=1): ").strip() or "1"
language = "en" if lang_choice == "1" else "hi"
# Simple voice selection
print("\nSelect Voice / आवाज़ चुनें:")
print("1. Female (Natural / महिला)")
print("2. Male (Natural / पुरुष)")
voice_choice = input("\nVoice (1 or 2, default=1): ").strip() or "1"
voice_gender = "female" if voice_choice == "1" else "male"
lang_display = "English" if language == "en" else "हिंदी (ENHANCED)"
print(f"\n✅ Language: {lang_display}")
print(f"✅ Voice: {voice_gender.capitalize()}")
if language == "hi":
print("\n🔥 Hindi Enhancements:")
print(" • Better speech recognition (Whisper 'small' model)")
print(" • Improved pronunciation and pacing")
print(" • Enhanced LLM responses in Hindi")
print(" • Longer pause detection for natural speech")
print("\n🔥 Installing dependencies if needed...\n")
assistant = TruckAssistant(voice_gender=voice_gender, use_gtts=True, language=language)
# Check Ollama
try:
requests.get("http://localhost:11434/api/tags", timeout=5)
print("✅ Ollama running\n")
except:
print("❌ Ollama not running. Start with: ollama serve\n")
return
print("="*60)
if language == "hi":
print("मोड चुनें:")
print("1. डेमो")
print("2. टेक्स्ट चैट")
print("3. वॉयस चैट (बेहतर हिंदी समर्थन)")
else:
print("Mode:")
print("1. Demo")
print("2. Text chat")
print("3. Voice chat")
print("="*60)
mode = input("\nSelect (1-3): ").strip()
if mode == "3":
if language == "hi":
print("\n🎤 वॉयस मोड - बोलने के लिए Enter दबाएं, बाहर निकलने के लिए Ctrl+C\n")
print("💡 टिप: स्पष्ट रूप से और थोड़ी धीमी गति से बोलें\n")
else:
print("\n🎤 VOICE MODE - Press Enter to speak, Ctrl+C to exit\n")
try:
while True:
prompt_msg = "बोलने के लिए Enter दबाएं..." if language == "hi" else "Press Enter to speak..."
input(prompt_msg)
assistant.voice_chat()
print("\n" + "="*60 + "\n")
except KeyboardInterrupt:
bye_msg = "\n\n👋 धन्यवाद! फिर मिलेंगे..." if language == "hi" else "\n\n👋 Exiting gracefully..."
print(bye_msg)
assistant.stop()
print("Goodbye! / अलविदा!")
else:
if language == "hi":
print("\n💬 टेक्स्ट मोड - बाहर निकलने के लिए 'quit' लिखें\n")
else:
print("\n💬 TEXT MODE - type 'quit' to exit\n")
try:
while True:
prompt_txt = "आप: " if language == "hi" else "You: "
user_input = input(prompt_txt).strip()
if user_input.lower() in ["quit", "exit", "q", "बाहर", "बंद"]:
assistant.stop()
bye_msg = "\n👋 धन्यवाद! फिर मिलेंगे!" if language == "hi" else "\n👋 Goodbye!"
print(bye_msg)
break
if user_input:
assistant.chat(user_input)
print("\n" + "="*60 + "\n")
except KeyboardInterrupt:
bye_msg = "\n\n👋 धन्यवाद! फिर मिलेंगे..." if language == "hi" else "\n\n👋 Exiting gracefully..."
print(bye_msg)
assistant.stop()
print("Goodbye! / अलविदा!")
if __name__ == "__main__":
main()