COMPLETE END-TO-END FLOW: Multi-Document Analysis to Report Generation Let me give you the most detailed explanation possible with theory, diagrams, and step-by-step breakdown. 🎯 SYSTEM OVERVIEW What We're Building: A system that takes 100+ documents (PDFs, DOCX, PPT, images, etc.) and generates a comprehensive onboarding report by understanding causal relationships and connections across all documents. Key Components: Document Storage - Store uploaded files Content Extraction - Get text from different formats Causal Analysis - Understand cause-effect relationships (with Claude) Knowledge Graph - Store relationships in Neo4j Vector Database - Enable semantic search in Qdrant Report Generation - Create final report (with Claude) πŸ“Š COMPLETE ARCHITECTURE DIAGRAM β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚ USER INTERFACE β”‚ β”‚ β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚ β”‚ β”‚ Upload Documents β”‚ β”‚ Generate Report β”‚ β”‚ β”‚ β”‚ (100+ files) β”‚ β”‚ Button β”‚ β”‚ β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β”‚ β”‚ β–Ό β–Ό β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚ APPLICATION LAYER β”‚ β”‚ β”‚ β”‚ β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚ β”‚ β”‚ DOCUMENT UPLOAD SERVICE β”‚ β”‚ β”‚ β”‚ β€’ Validate file types β”‚ β”‚ β”‚ β”‚ β€’ Calculate file hash (deduplication) β”‚ β”‚ β”‚ β”‚ β€’ Store metadata in PostgreSQL β”‚ β”‚ β”‚ β”‚ β€’ Save files to storage (Local) β”‚ β”‚ β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β”‚ β”‚ β”‚ β”‚ β”‚ β–Ό β”‚ β”‚ β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚ β”‚ β”‚ EXTRACTION ORCHESTRATOR β”‚ β”‚ β”‚ β”‚ β€’ Routes files to appropriate extractors β”‚ β”‚ β”‚ β”‚ β€’ Manages extraction queue β”‚ β”‚ β”‚ β”‚ β€’ Handles failures and retries β”‚ β”‚ β”‚ β””β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β”‚ β”‚ β”‚ β”‚ β”‚ β”‚ β”‚ β”‚ β–Ό β–Ό β–Ό β–Ό β”‚ β”‚ β”Œβ”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”€β”€β”€β” β”‚ β”‚ β”‚ PDF β”‚ β”‚ DOCX β”‚ β”‚ PPTX β”‚ β”‚ Image β”‚ β”‚ β”‚ β”‚Extr.β”‚ β”‚Extr. β”‚ β”‚Extr. β”‚ β”‚Extr. β”‚ β”‚ β”‚ β””β”€β”€β”¬β”€β”€β”˜ β””β”€β”€β”€β”¬β”€β”€β”˜ β””β”€β”€β”€β”¬β”€β”€β”˜ β””β”€β”€β”€β”¬β”€β”€β”€β”˜ β”‚ β”‚ β”‚ β”‚ β”‚ β”‚ β”‚ β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β”‚ β”‚ β”‚ β”‚ β”‚ β–Ό β”‚ β”‚ [Extracted Text for each document] β”‚ β”‚ β”‚ β”‚ β”‚ β–Ό β”‚ β”‚ β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚ β”‚ β”‚ πŸ€– CLAUDE AI - CAUSAL EXTRACTION β”‚ β”‚ β”‚ β”‚ For each document: β”‚ β”‚ β”‚ β”‚ Input: Extracted text + metadata β”‚ β”‚ β”‚ β”‚ Output: List of causal relationships β”‚ β”‚ β”‚ β”‚ β”‚ β”‚ β”‚ β”‚ Example Output: β”‚ β”‚ β”‚ β”‚ { β”‚ β”‚ β”‚ β”‚ "cause": "Budget cut by 30%", β”‚ β”‚ β”‚ β”‚ "effect": "ML features postponed", β”‚ β”‚ β”‚ β”‚ "confidence": 0.92, β”‚ β”‚ β”‚ β”‚ "entities": ["Finance Team", "ML Team"] β”‚ β”‚ β”‚ β”‚ } β”‚ β”‚ β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β”‚ β”‚ β”‚ β”‚ β”‚ β–Ό β”‚ β”‚ [Causal Relationships Database] β”‚ β”‚ (Temporary PostgreSQL table) β”‚ β”‚ β”‚ β”‚ β”‚ β–Ό β”‚ β”‚ β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚ β”‚ β”‚ πŸ€– CLAUDE AI - ENTITY RESOLUTION β”‚ β”‚ β”‚ β”‚ Resolve entity mentions across all documents β”‚ β”‚ β”‚ β”‚ β”‚ β”‚ β”‚ β”‚ Input: All entity mentions ["John", "J. Smith", "John Smith"] β”‚ β”‚ β”‚ β”‚ Output: Resolved entities {"John Smith": ["John", "J. Smith"]} β”‚ β”‚ β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β”‚ β”‚ β”‚ β”‚ β”‚ β–Ό β”‚ β”‚ β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚ β”‚ β”‚ KNOWLEDGE GRAPH BUILDER β”‚ β”‚ β”‚ β”‚ Build Neo4j graph from causal relationships β”‚ β”‚ β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β”‚ β–Ό β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚ STORAGE LAYER β”‚ β”‚ β”‚ β”‚ β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚ β”‚ β”‚ PostgreSQL β”‚ β”‚ Neo4j β”‚ β”‚ Qdrant β”‚ β”‚ β”‚ β”‚ β”‚ β”‚ β”‚ β”‚ β”‚ β”‚ β”‚ β”‚ β€’ Metadata β”‚ β”‚ β€’ Nodes: β”‚ β”‚ β€’ Vectors β”‚ β”‚ β”‚ β”‚ β€’ File paths β”‚ β”‚ - Events β”‚ β”‚ β€’ Enriched β”‚ β”‚ β”‚ β”‚ β€’ Status β”‚ β”‚ - Entities β”‚ β”‚ chunks β”‚ β”‚ β”‚ β”‚ β”‚ β”‚ - Documents β”‚ β”‚ β€’ Metadata β”‚ β”‚ β”‚ β”‚ β”‚ β”‚ β”‚ β”‚ β”‚ β”‚ β”‚ β”‚ β”‚ β”‚ β€’ Edges: β”‚ β”‚ β”‚ β”‚ β”‚ β”‚ β”‚ β”‚ - CAUSES β”‚ β”‚ β”‚ β”‚ β”‚ β”‚ β”‚ β”‚ - INVOLVES β”‚ β”‚ β”‚ β”‚ β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β”‚ - MENTIONS β”‚ β”‚ β”‚ β”‚ β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β”‚ β”‚ β”‚ β”‚ β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β”‚ β”‚ β–Ό β–Ό β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚ KG TO QDRANT ENRICHMENT PIPELINE β”‚ β”‚ β”‚ β”‚ β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚ β”‚ β”‚ 1. Query Neo4j for causal chains β”‚ β”‚ β”‚ β”‚ MATCH (a)-[:CAUSES*1..3]->(b) β”‚ β”‚ β”‚ β”‚ β”‚ β”‚ β”‚ β”‚ 2. Convert to enriched text chunks β”‚ β”‚ β”‚ β”‚ "Budget cut β†’ ML postponed β†’ Timeline shifted" β”‚ β”‚ β”‚ β”‚ β”‚ β”‚ β”‚ β”‚ 3. Generate embeddings (OpenAI) β”‚ β”‚ β”‚ β”‚ β”‚ β”‚ β”‚ β”‚ 4. Store in Qdrant with metadata from KG β”‚ β”‚ β”‚ β”‚ - Original causal chain β”‚ β”‚ β”‚ β”‚ - Entities involved β”‚ β”‚ β”‚ β”‚ - Confidence scores β”‚ β”‚ β”‚ β”‚ - Source documents β”‚ β”‚ β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β”‚ β–Ό β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚ REPORT GENERATION PHASE β”‚ β”‚ β”‚ β”‚ User clicks "Generate Report" β”‚ β”‚ β”‚ β”‚ β”‚ β–Ό β”‚ β”‚ β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚ β”‚ β”‚ RETRIEVAL ORCHESTRATOR β”‚ β”‚ β”‚ β”‚ β”‚ β”‚ β”‚ β”‚ Step 1: Semantic Search (Qdrant) β”‚ β”‚ β”‚ β”‚ Query: "project overview timeline decisions" β”‚ β”‚ β”‚ β”‚ Returns: Top 50 most relevant chunks β”‚ β”‚ β”‚ β”‚ β”‚ β”‚ β”‚ β”‚ Step 2: Graph Traversal (Neo4j) β”‚ β”‚ β”‚ β”‚ Query: Critical causal chains with confidence > 0.8 β”‚ β”‚ β”‚ β”‚ Returns: Important decision paths β”‚ β”‚ β”‚ β”‚ β”‚ β”‚ β”‚ β”‚ Step 3: Entity Analysis (Neo4j) β”‚ β”‚ β”‚ β”‚ Query: Key people, teams, projects β”‚ β”‚ β”‚ β”‚ Returns: Entity profiles β”‚ β”‚ β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β”‚ β”‚ β”‚ β”‚ β”‚ β–Ό β”‚ β”‚ [Aggregated Context Package] β”‚ β”‚ β”‚ β”‚ β”‚ β–Ό β”‚ β”‚ β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚ β”‚ β”‚ πŸ€– CLAUDE AI - FINAL REPORT GENERATION β”‚ β”‚ β”‚ β”‚ β”‚ β”‚ β”‚ β”‚ Input: β”‚ β”‚ β”‚ β”‚ β€’ 50 semantic chunks from Qdrant β”‚ β”‚ β”‚ β”‚ β€’ 20 causal chains from Neo4j β”‚ β”‚ β”‚ β”‚ β€’ Entity profiles β”‚ β”‚ β”‚ β”‚ β€’ Report template β”‚ β”‚ β”‚ β”‚ β”‚ β”‚ β”‚ β”‚ Prompt: β”‚ β”‚ β”‚ β”‚ "You are creating an onboarding report. β”‚ β”‚ β”‚ β”‚ Based on 100+ documents, synthesize: β”‚ β”‚ β”‚ β”‚ - Project overview β”‚ β”‚ β”‚ β”‚ - Key decisions and WHY they were made β”‚ β”‚ β”‚ β”‚ - Critical causal chains β”‚ β”‚ β”‚ β”‚ - Timeline and milestones β”‚ β”‚ β”‚ β”‚ - Current status and next steps" β”‚ β”‚ β”‚ β”‚ β”‚ β”‚ β”‚ β”‚ Output: Comprehensive Markdown report β”‚ β”‚ β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β”‚ β”‚ β”‚ β”‚ β”‚ β–Ό β”‚ β”‚ β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚ β”‚ β”‚ PDF GENERATION β”‚ β”‚ β”‚ β”‚ β€’ Convert Markdown to PDF β”‚ β”‚ β”‚ β”‚ β€’ Add formatting, table of contents β”‚ β”‚ β”‚ β”‚ β€’ Include citations to source documents β”‚ β”‚ β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β”‚ β”‚ β”‚ β”‚ β”‚ β–Ό β”‚ β”‚ [Final PDF Report] β”‚ β”‚ β”‚ β”‚ β”‚ β–Ό β”‚ β”‚ Download to user β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ πŸ“š COMPLETE THEORY-WISE STEP-BY-STEP FLOW Let me explain the entire system in pure theory - how it works, why each step exists, and what problem it solves. 🎯 THE BIG PICTURE (Theory) The Problem: A new person joins a project that has 100+ documents (meeting notes, technical specs, design docs, emails, presentations). Reading all of them would take weeks. They need to understand: WHAT happened in the project WHY decisions were made (causal relationships) WHO is involved WHEN things happened HOW everything connects The Solution: Build an intelligent system that: Reads all documents automatically Understands cause-and-effect relationships Connects related information across documents Generates a comprehensive summary report πŸ”„ COMPLETE FLOW (Theory Explanation) STAGE 1: DOCUMENT INGESTION Theory: Why This Stage Exists Problem: We have 100+ documents in different formats (PDF, Word, PowerPoint, Excel, images). We need to get them into the system. Goal: Accept all document types Organize them Prevent duplicates Track processing status What Happens: USER ACTION: └─> User uploads 100 files through web interface SYSTEM ACTIONS: Step 1.1: FILE VALIDATION β”œβ”€> Check: Is this a supported file type? β”œβ”€> Check: Is file size acceptable? └─> Decision: Accept or Reject Step 1.2: DEDUPLICATION β”œβ”€> Calculate unique hash (fingerprint) of file content β”œβ”€> Check: Have we seen this exact file before? └─> Decision: Store as new OR link to existing Step 1.3: METADATA STORAGE β”œβ”€> Store: filename, type, upload date, size β”œβ”€> Store: who uploaded it, when └─> Assign: unique document ID Step 1.4: PHYSICAL STORAGE β”œβ”€> Save file to disk/cloud storage └─> Record: where file is stored Step 1.5: QUEUE FOR PROCESSING β”œβ”€> Add document to processing queue └─> Status: "waiting for extraction" STAGE 2: CONTENT EXTRACTION Theory: Why This Stage Exists Problem: Documents are in binary formats (PDF, DOCX, PPTX). We can't directly read them - we need to extract the text content. Goal: Convert all documents into plain text that can be analyzed What Happens: PROCESSING QUEUE: └─> System picks next document from queue Step 2.1: IDENTIFY FILE TYPE β”œβ”€> Read: document.type └─> Route to appropriate extractor Step 2.2a: IF PDF β”œβ”€> Use: PyMuPDF library β”œβ”€> Process: Read each page β”œβ”€> Extract: Text content └─> Output: Plain text string Step 2.2b: IF DOCX (Word) β”œβ”€> Use: python-docx library β”œβ”€> Process: Read paragraphs, tables β”œβ”€> Extract: Text content └─> Output: Plain text string Step 2.2c: IF PPTX (PowerPoint) β”œβ”€> Use: python-pptx library β”œβ”€> Process: Read each slide β”œβ”€> Extract: Title, content, notes └─> Output: Plain text string Step 2.2d: IF CSV/XLSX (Spreadsheet) β”œβ”€> Use: pandas library β”œβ”€> Process: Read rows and columns β”œβ”€> Convert: To text representation └─> Output: Structured text Step 2.2e: IF IMAGE (PNG, JPG) β”œβ”€> Use: Claude Vision API (AI model) β”œβ”€> Process: Analyze image content β”œβ”€> Extract: Description of diagram/chart └─> Output: Text description Step 2.3: TEXT CLEANING β”œβ”€> Remove: Extra whitespace β”œβ”€> Fix: Encoding issues β”œβ”€> Preserve: Important structure └─> Output: Clean text Step 2.4: STORE EXTRACTED TEXT β”œβ”€> Save: To database β”œβ”€> Link: To original document └─> Update status: "text_extracted" Example: Input (PDF file): [Binary PDF data - cannot be read directly] Output (Extracted Text): "Project Alpha - Q3 Meeting Minutes Date: August 15, 2024 Discussion: Due to budget constraints, we decided to postpone the machine learning features. This will impact our December launch timeline. Action Items: - Revise project roadmap - Notify stakeholders - Adjust resource allocation" Why This Stage? Different formats need different tools - One size doesn't fit all Extract only text - Remove formatting, images (except for image docs) Standardize - All docs become plain text for next stage Images are special - They need AI (Claude Vision) to understand STAGE 3: CAUSAL RELATIONSHIP EXTRACTION ⭐ (CRITICAL!) Theory: Why This Stage Exists Problem: Having text is not enough. We need to understand WHY things happened. Example: Just knowing "ML features postponed" is not useful Knowing "Budget cut β†’ ML features postponed β†’ Timeline delayed" is MUCH more useful Goal: Extract cause-and-effect relationships from text What Is A Causal Relationship? A causal relationship has three parts: CAUSE β†’ EFFECT Example 1: Cause: "Budget reduced by 30%" Effect: "ML features postponed" Example 2: Cause: "John Smith left the company" Effect: "Sarah Chen became lead developer" Example 3: Cause: "User feedback showed confusion" Effect: "We redesigned the onboarding flow" How We Extract Them: INPUT: Extracted text from document Step 3.1: BASIC NLP DETECTION (SpaCy) β”œβ”€> Look for: Causal keywords β”‚ Examples: "because", "due to", "as a result", β”‚ "led to", "caused", "therefore" β”œβ”€> Find: Sentences containing these patterns └─> Output: Potential causal relationships (low confidence) Step 3.2: AI-POWERED EXTRACTION (Claude API) ⭐ β”œβ”€> Send: Full document text to Claude AI β”œβ”€> Ask Claude: "Find ALL causal relationships in this text" β”œβ”€> Claude analyzes: β”‚ β€’ Explicit relationships ("because X, therefore Y") β”‚ β€’ Implicit relationships (strongly implied) β”‚ β€’ Context and background β”‚ β€’ Who/what is involved β”œβ”€> Claude returns: Structured list of relationships └─> Output: High-quality causal relationships (high confidence) Step 3.3: STRUCTURE THE OUTPUT For each relationship, extract: β”œβ”€> Cause: What triggered this? β”œβ”€> Effect: What was the result? β”œβ”€> Context: Additional background β”œβ”€> Entities: Who/what is involved? (people, teams, projects) β”œβ”€> Confidence: How certain are we? (0.0 to 1.0) β”œβ”€> Source: Which document and sentence? └─> Date: When did this happen? Step 3.4: STORE RELATIONSHIPS β”œβ”€> Save: To temporary database table └─> Link: To source document Example: Claude's Analysis Input Text: "In the Q3 review meeting, the CFO announced a 30% budget reduction due to decreased market demand As a result, the engineering team decided to postpone machine learning features for Project Alpha. This means our December launch will be delayed until March 2025." Claude's Output: [ { "cause": "Market demand decreased", "effect": "CFO reduced budget by 30%", "context": "Q3 financial review", "entities": ["CFO", "Finance Team"], "confidence": 0.95, "source_sentence": "30% budget reduction due to decreased market demand", "date": "Q3 2024" }, { "cause": "Budget reduced by 30%", "effect": "Machine learning features postponed", "context": "Project Alpha roadmap adjustment", "entities": ["Engineering Team", "Project Alpha", "ML Team"], "confidence": 0.92, "source_sentence": "decided to postpone machine learning features", "date": "Q3 2024" }, { "cause": "ML features postponed", "effect": "Launch delayed from December to March", "context": "Timeline impact", "entities": ["Project Alpha"], "confidence": 0.90, "source_sentence": "December launch will be delayed until March 2025", "date": "2024-2025" } ] ``` ### **Why Use Both NLP AND Claude?** | Method | Pros | Cons | Use Case | |--------|------|------|----------| | **NLP (SpaCy)** | Fast, cheap, runs locally | Misses implicit relationships, lower accuracy | Quick first pass, simple docs | | **Claude AI** | Understands context, finds implicit relationships, high accuracy | Costs money, requires API | Complex docs, deep analysis | **Strategy:** Use NLP first for quick scan, then Claude for deep analysis. ### **Why This Stage Is Critical:** Without causal extraction, you just have a pile of facts: - ❌ "Budget was cut" - ❌ "ML features postponed" - ❌ "Timeline changed" With causal extraction, you understand the story: - βœ… Market demand dropped β†’ Budget cut β†’ ML postponed β†’ Timeline delayed This is **the heart of your system** - it's what makes it intelligent. --- ## **STAGE 4: ENTITY RESOLUTION** πŸ€– ### **Theory: Why This Stage Exists** **Problem:** Same people/things are mentioned differently across documents. **Examples:** - "John Smith", "John", "J. Smith", "Smith" β†’ Same person - "Project Alpha", "Alpha", "The Alpha Project" β†’ Same project - "ML Team", "Machine Learning Team", "AI Team" β†’ Same team (maybe) **Goal:** Identify that these different mentions refer to the same entity. ### **What Happens:** ``` INPUT: All causal relationships from all documents Step 4.1: COLLECT ALL ENTITIES β”œβ”€> Scan: All causal relationships β”œβ”€> Extract: Every entity mentioned └─> Result: List of entity mentions ["John", "John Smith", "J. Smith", "Sarah", "S. Chen", "Project Alpha", "Alpha", "ML Team", ...] Step 4.2: GROUP BY ENTITY TYPE β”œβ”€> People: ["John", "John Smith", "Sarah", ...] β”œβ”€> Projects: ["Project Alpha", "Alpha", ...] β”œβ”€> Teams: ["ML Team", "AI Team", ...] └─> Organizations: ["Finance Dept", "Engineering", ...] Step 4.3: AI-POWERED RESOLUTION (Claude API) ⭐ β”œβ”€> Send: All entity mentions to Claude β”œβ”€> Ask Claude: "Which mentions refer to the same real-world entity?" β”œβ”€> Claude analyzes: β”‚ β€’ Name similarities β”‚ β€’ Context clues β”‚ β€’ Role descriptions β”‚ β€’ Co-occurrence patterns └─> Claude returns: Grouped entities Step 4.4: CREATE CANONICAL NAMES β”œβ”€> Choose: Best name for each entity β”œβ”€> Example: "John Smith" becomes canonical for ["John", "J. Smith"] └─> Store: Mapping table ``` ### **Example:** **Input (mentions across all docs):** ``` Document 1: "John led the meeting" Document 2: "J. Smith approved the budget" Document 3: "John Smith will present next week" Document 4: "Smith suggested the new approach" Claude's Resolution: { "entities": { "John Smith": { "canonical_name": "John Smith", "mentions": ["John", "J. Smith", "John Smith", "Smith"], "type": "Person", "role": "Project Lead", "confidence": 0.95 } } } ``` ### **Why This Matters:** Without entity resolution: - ❌ System thinks "John" and "John Smith" are different people - ❌ Can't track someone's involvement across documents - ❌ Relationships are fragmented With entity resolution: - βœ… System knows they're the same person - βœ… Can see full picture of someone's involvement - βœ… Relationships are connected --- ## **STAGE 5: KNOWLEDGE GRAPH CONSTRUCTION** πŸ“Š ### **Theory: Why This Stage Exists** **Problem:** We have hundreds of causal relationships. How do we organize them? How do we find connections? **Solution:** Build a **graph** - a network of nodes (things) and edges (relationships). ### **What Is A Knowledge Graph?** Think of it like a map: - **Nodes** = Places (events, people, projects) - **Edges** = Roads (relationships between them) ``` Example Graph: (Budget Cut) β”‚ β”‚ CAUSES β–Ό (ML Postponed) β”‚ β”‚ CAUSES β–Ό (Timeline Delayed) β”‚ β”‚ AFFECTS β–Ό (Project Alpha) β”‚ β”‚ INVOLVES β–Ό (Engineering Team) ``` ### **What Happens:** ``` INPUT: Causal relationships + Resolved entities Step 5.1: CREATE EVENT NODES For each causal relationship: β”œβ”€> Create Node: Cause event β”œβ”€> Create Node: Effect event └─> Properties: text, date, confidence Example: Node1: {type: "Event", text: "Budget reduced by 30%"} Node2: {type: "Event", text: "ML features postponed"} Step 5.2: CREATE ENTITY NODES For each resolved entity: β”œβ”€> Create Node: Entity └─> Properties: name, type, role Example: Node3: {type: "Person", name: "John Smith", role: "Lead"} Node4: {type: "Project", name: "Project Alpha"} Step 5.3: CREATE DOCUMENT NODES For each source document: └─> Create Node: Document Properties: filename, date, type Example: Node5: {type: "Document", name: "Q3_meeting.pdf"} Step 5.4: CREATE RELATIONSHIPS (Edges) β”œβ”€> CAUSES: Event1 β†’ Event2 β”œβ”€> INVOLVED_IN: Person β†’ Event β”œβ”€> MENTIONS: Document β†’ Entity β”œβ”€> AFFECTS: Event β†’ Project └─> Properties: confidence, source, date Example Relationships: (Budget Cut) -[CAUSES]-> (ML Postponed) (John Smith) -[INVOLVED_IN]-> (Budget Cut) (Q3_meeting.pdf) -[MENTIONS]-> (John Smith) Step 5.5: STORE IN NEO4J β”œβ”€> Connect: To Neo4j database β”œβ”€> Create: All nodes β”œβ”€> Create: All relationships └─> Index: For fast querying ``` ### **Visual Example:** **Before (Just Text):** ``` "Budget cut β†’ ML postponed" "ML postponed β†’ Timeline delayed" "John Smith involved in budget decision" ``` **After (Knowledge Graph):** ``` (John Smith) β”‚ β”‚ INVOLVED_IN β–Ό (Budget Cut) ──MENTIONED_IN──> (Q3_meeting.pdf) β”‚ β”‚ CAUSES β–Ό (ML Postponed) ──AFFECTS──> (Project Alpha) β”‚ β”‚ CAUSES β–Ό (Timeline Delayed) ──INVOLVES──> (Engineering Team) ``` ### **Why Use A Graph?** | Question | Without Graph | With Graph | |----------|---------------|------------| | "Why was ML postponed?" | Search all docs manually | Follow CAUSES edge backwards | | "What did budget cut affect?" | Re-read everything | Follow CAUSES edges forward | | "What is John involved in?" | Search his name everywhere | Follow INVOLVED_IN edges | | "How are events connected?" | Hard to see | Visual path through graph | **Key Benefit:** The graph shows **HOW** everything connects, not just WHAT exists. --- ## **STAGE 6: GRAPH TO VECTOR DATABASE** πŸ”„ ### **Theory: Why This Stage Exists** **Problem:** - Neo4j is great for finding relationships ("What caused X?") - But it's NOT good for semantic search ("Find docs about machine learning") **Solution:** We need BOTH: - **Neo4j** = Find causal chains and connections - **Qdrant** = Find relevant content by meaning ### **Why We Need Both:** **Neo4j (Graph Database):** ``` Good for: "Show me the chain of events that led to timeline delay" Answer: Budget Cut β†’ ML Postponed β†’ Timeline Delayed ``` **Qdrant (Vector Database):** ``` Good for: "Find all content related to machine learning" Answer: [50 relevant chunks from across all documents] ``` ### **What Happens:** ``` INPUT: Complete Knowledge Graph in Neo4j Step 6.1: EXTRACT CAUSAL CHAINS β”œβ”€> Query Neo4j: "Find all causal paths" β”‚ Example: MATCH (a)-[:CAUSES*1..3]->(b) β”œβ”€> Get: Sequences of connected events └─> Result: List of causal chains Example chains: 1. Market demand ↓ β†’ Budget cut β†’ ML postponed 2. John left β†’ Sarah promoted β†’ Team restructured 3. User feedback β†’ Design change β†’ Timeline adjusted Step 6.2: CONVERT TO NARRATIVE TEXT Take each chain and write it as a story: Before: [Node1] β†’ [Node2] β†’ [Node3] After: "Due to decreased market demand, the CFO reduced the budget by 30%. This led to the postponement of machine learning features, which ultimately delayed the December launch to March." WHY? Because we need text to create embeddings! Step 6.3: ENRICH WITH CONTEXT Add information from the graph: β”œβ”€> Who was involved? β”œβ”€> When did it happen? β”œβ”€> Which documents mention this? β”œβ”€> What projects were affected? └─> How confident are we? Enriched text: "[CAUSAL CHAIN] Due to decreased market demand, the CFO reduced the budget by 30%. This led to ML postponement. [METADATA] Date: Q3 2024 Involved: CFO, Engineering Team, Project Alpha Sources: Q3_meeting.pdf, budget_report.xlsx Confidence: 0.92" Step 6.4: CREATE EMBEDDINGS β”œβ”€> Use: OpenAI Embedding API β”œβ”€> Input: Enriched text β”œβ”€> Output: Vector (1536 numbers) β”‚ Example: [0.123, -0.456, 0.789, ...] └─> This vector represents the "meaning" of the text Step 6.5: STORE IN QDRANT For each enriched chunk: β”œβ”€> Vector: The embedding β”œβ”€> Payload: The original text + all metadata β”‚ { β”‚ "text": "enriched narrative", β”‚ "type": "causal_chain", β”‚ "entities": ["CFO", "Project Alpha"], β”‚ "sources": ["Q3_meeting.pdf"], β”‚ "confidence": 0.92, β”‚ "graph_path": "Node1->Node2->Node3" β”‚ } └─> Store: In Qdrant collection ``` ### **What Are Embeddings?** Think of embeddings as **coordinates in meaning-space**: ``` Text: "machine learning features" Embedding: [0.2, 0.8, 0.1, -0.3, ...] ← 1536 numbers Text: "AI capabilities" Embedding: [0.19, 0.82, 0.09, -0.29, ...] ← Similar numbers! Text: "budget reporting" Embedding: [-0.6, 0.1, 0.9, 0.4, ...] ← Very different numbers ``` Similar meanings β†’ Similar vectors β†’ Qdrant finds them together! ### **Example Flow:** **From Neo4j:** ``` Chain: (Budget Cut) β†’ (ML Postponed) β†’ (Timeline Delayed) ``` **Convert to Text:** ``` "Budget reduced by 30% β†’ ML features postponed β†’ December launch delayed to March" ``` **Enrich:** ``` "[Causal Chain] Budget reduced by 30% led to ML features being postponed, which delayed the December launch to March 2025. Involved: CFO, Engineering Team, Project Alpha Sources: Q3_meeting.pdf, roadmap.pptx Confidence: 0.91 Date: August-September 2024" ``` **Create Embedding:** ``` [0.234, -0.567, 0.891, 0.123, ...] ← 1536 numbers Store in Qdrant: { "id": "chain_001", "vector": [0.234, -0.567, ...], "payload": { "text": "enriched narrative...", "type": "causal_chain", "entities": ["CFO", "Engineering Team"], "sources": ["Q3_meeting.pdf"], "confidence": 0.91 } } ``` ### **Why This Stage?** Now we have the **best of both worlds**: | Need | Use | |------|-----| | "Find content about machine learning" | Qdrant semantic search | | "Show me the causal chain" | Neo4j graph traversal | | "Why did timeline delay?" | Start with Qdrant, then Neo4j for details | | "Generate comprehensive report" | Pull from BOTH | --- ## **STAGE 7: REPORT GENERATION** πŸ“ (FINAL STAGE) ### **Theory: Why This Stage Exists** **Goal:** Take everything we've learned from 100+ documents and create ONE comprehensive, readable report. ### **What Happens:** ``` USER ACTION: └─> User clicks "Generate Onboarding Report" Step 7.1: DEFINE REPORT REQUIREMENTS What should the report include? β”œβ”€> Project overview β”œβ”€> Key decisions and WHY they were made β”œβ”€> Important people and their roles β”œβ”€> Timeline of events β”œβ”€> Current status └─> Next steps Step 7.2: SEMANTIC SEARCH (Qdrant) Query 1: "project overview goals objectives" β”œβ”€> Qdrant returns: Top 20 relevant chunks └─> Covers: High-level project information Query 2: "timeline milestones dates schedule" β”œβ”€> Qdrant returns: Top 15 relevant chunks └─> Covers: Timeline information Query 3: "decisions architecture technical" β”œβ”€> Qdrant returns: Top 15 relevant chunks └─> Covers: Technical decisions Total: ~50 most relevant chunks from Qdrant Step 7.3: GRAPH TRAVERSAL (Neo4j) Query 1: Get critical causal chains β”œβ”€> MATCH (a)-[:CAUSES*2..4]->(b) β”œβ”€> WHERE confidence > 0.8 └─> Returns: Top 20 important decision chains Query 2: Get key entities β”œβ”€> MATCH (e:Entity)-[:INVOLVED_IN]->(events) β”œβ”€> Count events per entity └─> Returns: Most involved people/teams/projects Query 3: Get recent timeline β”œβ”€> MATCH (e:Event) WHERE e.date > '2024-01-01' β”œβ”€> Order by date └─> Returns: Chronological event list Step 7.4: AGGREGATE CONTEXT Combine everything: β”œβ”€> 50 semantic chunks from Qdrant β”œβ”€> 20 causal chains from Neo4j β”œβ”€> Key entities and their profiles β”œβ”€> Timeline of events └─> Metadata about sources Total Context Size: ~30,000-50,000 tokens Step 7.5: PREPARE PROMPT FOR CLAUDE Structure the prompt: β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚ SYSTEM: You are an expert technical β”‚ β”‚ writer creating an onboarding reportβ”‚ β”‚ β”‚ β”‚ USER: Based on these 100+ documents,β”‚ β”‚ create a comprehensive report. β”‚ β”‚ β”‚ β”‚ # SEMANTIC CONTEXT: β”‚ β”‚ [50 chunks from Qdrant] β”‚ β”‚ β”‚ β”‚ # CAUSAL CHAINS: β”‚ β”‚ [20 decision chains from Neo4j] β”‚ β”‚ β”‚ β”‚ # KEY ENTITIES: β”‚ β”‚ [People, teams, projects] β”‚ β”‚ β”‚ β”‚ # TIMELINE: β”‚ β”‚ [Chronological events] β”‚ β”‚ β”‚ β”‚ Generate report with sections: β”‚ β”‚ 1. Executive Summary β”‚ β”‚ 2. Project Overview β”‚ β”‚ 3. Key Decisions (with WHY) β”‚ β”‚ 4. Timeline β”‚ β”‚ 5. Current Status β”‚ β”‚ 6. Next Steps β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ Step 7.6: CALL CLAUDE API ⭐ β”œβ”€> Send: Complete prompt to Claude β”œβ”€> Claude processes: β”‚ β€’ Reads all context β”‚ β€’ Identifies key themes β”‚ β€’ Synthesizes information β”‚ β€’ Creates narrative structure β”‚ β€’ Explains causal relationships β”‚ β€’ Writes clear, coherent report └─> Returns: Markdown-formatted report Step 7.7: POST-PROCESS REPORT β”œβ”€> Add: Table of contents β”œβ”€> Add: Citations to source documents β”œβ”€> Add: Confidence indicators β”œβ”€> Format: Headings, bullet points, emphasis └─> Result: Final Markdown report Step 7.8: CONVERT TO PDF β”œβ”€> Use: Markdown-to-PDF library β”œβ”€> Add: Styling and formatting β”œβ”€> Add: Page numbers, headers └─> Result: Professional PDF report Step 7.9: DELIVER TO USER β”œβ”€> Save: PDF to storage β”œβ”€> Generate: Download link └─> Show: Success message with download button ## **πŸ”„ COMPLETE DATA FLOW SUMMARY** ``` Documents (100+) ↓ [Extract Text] β†’ Plain Text ↓ [Claude: Causal Extraction] β†’ Relationships List ↓ [Claude: Entity Resolution] β†’ Resolved Entities ↓ [Build Graph] β†’ Neo4j Knowledge Graph ↓ [Convert + Enrich] β†’ Narrative Chunks ↓ [Create Embeddings] β†’ Vectors ↓ [Store] β†’ Qdrant Vector DB ↓ [User Request] β†’ "Generate Report" ↓ [Query Qdrant] β†’ Relevant Chunks + [Query Neo4j] β†’ Causal Chains ↓ [Claude: Synthesis] β†’ Final Report ↓ [Convert] β†’ PDF ↓ [Deliver] β†’ User Downloads Report ```