# 🚀 Enhanced AI Tech Stack Selector v4.0 ## 📋 Overview The Enhanced AI Tech Stack Selector is an enterprise-grade, AI-powered system that intelligently analyzes business requirements and recommends optimal technology stacks. It's designed as part of a 4-service automated development pipeline that takes natural language requirements and outputs complete, production-ready applications. ## 🎯 System Purpose **Input**: Processed requirements from the Requirement Processor (Port 8001) **Output**: Intelligent technology stack recommendations with implementation roadmaps **Integration**: Part of n8n workflow orchestration system ## 🏗️ Architecture Overview ``` ┌─────────────────────────────────────────────────────────────────┐ │ Enhanced Tech Stack Selector │ ├─────────────────────────────────────────────────────────────────┤ │ 🧠 Intelligence Layer │ │ ├── ContextOptimizationEngine (Token Management) │ │ ├── HallucinationPreventionEngine (Quality Assurance) │ │ ├── BusinessProblemAnalyzer (AI Business Understanding) │ │ ├── TechnologyIntelligenceEngine (Multi-AI Recommendations) │ │ └── EnhancedTechStackSelector (Main Orchestrator) │ ├─────────────────────────────────────────────────────────────────┤ │ 💾 Storage Layer │ │ ├── Redis (Session Context - Fast Access) │ │ ├── PostgreSQL (Structured Decision History) │ │ ├── Neo4j (Technology Relationship Graphs) │ │ └── ChromaDB (Vector Similarity Search) │ ├─────────────────────────────────────────────────────────────────┤ │ 🤖 AI Integration Layer │ │ ├── Claude 3.5 Sonnet (Primary Architecture Analysis) │ │ ├── GPT-4 Turbo (Secondary Validation) │ │ └── Rule-Based Engine (Baseline Validation) │ └─────────────────────────────────────────────────────────────────┘ ``` ## 🔧 Core Components ### 1. **ContextOptimizationEngine** **Purpose**: Manages AI context within token limits while maximizing relevance **Key Features**: - **Token Budget Management**: Claude (180K), GPT-4 (100K), Local (8K) - **Intelligent Context Selection**: Prioritizes most relevant information - **Hierarchical Context Structure**: Level 1 (Critical) → Level 2 (Important) → Level 3 (Supporting) - **Progressive Disclosure**: Adds context layers as needed **How It Works**: ```python # 1. Calculate available tokens available_tokens = self.max_tokens['claude'] # 180,000 # 2. Gather all context components context_components = { 'current_requirements': {'priority': 1.0, 'tokens': 5000}, 'similar_decisions': {'priority': 0.9, 'tokens': 8000}, 'technology_trends': {'priority': 0.7, 'tokens': 3000} } # 3. Select highest priority components that fit budget selected_context = intelligent_selection(components, available_tokens) # 4. Create hierarchical structure for progressive feeding hierarchical_context = create_levels(selected_context) ``` ### 2. **HallucinationPreventionEngine** **Purpose**: Detects and prevents AI hallucinations in technology recommendations **Validation Layers**: - **Technology Existence**: Validates against known technology database - **Scale Appropriateness**: Ensures tech choices match project scale - **Domain Fit**: Validates domain-specific technology alignment - **Internal Consistency**: Checks for contradictions in recommendations - **Implementation Feasibility**: Validates team size vs complexity **Technology Knowledge Base**: ```python technology_knowledge_base = { 'frontend_frameworks': { 'react': {'maturity': 'high', 'ecosystem': 'excellent'}, 'vue': {'maturity': 'high', 'ecosystem': 'good'}, 'angular': {'maturity': 'high', 'ecosystem': 'excellent'} }, 'backend_technologies': { 'nodejs': {'performance': 'good', 'scalability': 'good'}, 'python': {'performance': 'medium', 'scalability': 'good'}, 'java': {'performance': 'excellent', 'scalability': 'excellent'} } } ``` ### 3. **ContextPersistenceManager** **Purpose**: Manages context storage across multiple database systems **Storage Strategy**: - **Redis**: Fast session context (1-hour TTL) - **PostgreSQL**: Structured decision history with versioning - **Neo4j**: Technology relationship graphs and patterns - **ChromaDB**: Vector embeddings for semantic similarity search **Data Flow**: ``` User Request → Context Retrieval → AI Analysis → Decision Storage ↓ ↓ ↓ ↓ Project ID → Redis Lookup → Multi-AI → All Databases Session Cache Processing Updated ``` ### 4. **BusinessProblemAnalyzer** **Purpose**: Uses AI to understand core business problems dynamically **Analysis Process**: 1. **Context Extraction**: Pulls domain, complexity, requirements from processor output 2. **AI Business Analysis**: Claude analyzes business model, value proposition, constraints 3. **Problem Characteristics**: Assesses complexity, scale, performance, team needs 4. **Fallback Logic**: Rule-based analysis when AI unavailable **Business Model Detection**: ```python # AI Prompt Example """ Analyze this business requirement: Domain: ecommerce Requirements: "Online marketplace for handmade crafts..." Return JSON: { "core_business_problem": "Enable artisans to sell online", "business_model": "marketplace", "value_proposition": "Connect craft buyers with artisan sellers", "success_criteria": ["vendor adoption", "transaction volume"] } """ ``` ### 5. **TechnologyIntelligenceEngine** **Purpose**: AI-driven technology recommendations with multi-model consensus **Recommendation Process**: 1. **Context Optimization**: Prepare context for AI models 2. **Primary Analysis**: Claude generates comprehensive recommendations 3. **Secondary Validation**: GPT-4 validates and suggests improvements 4. **Multi-AI Consensus**: Synthesizes recommendations from multiple sources 5. **Final Assessment**: Risk analysis, implementation roadmap, success metrics **AI Consensus Logic**: ```python # Weight different AI models based on reliability model_weights = { 'claude': 0.4, # Primary for architecture 'gpt4': 0.3, # Secondary for validation 'rule_based': 0.3 # Baseline validation } # Calculate consensus score consensus_score = sum(model_confidence * weight for model, weight in weights) ``` ### 6. **EnhancedTechStackSelector** **Purpose**: Main orchestrator that coordinates all components **Selection Process**: 1. **Context Retrieval**: Get conversation history for project continuity 2. **Business Analysis**: Understand the core business problem 3. **Historical Learning**: Find similar past decisions and success rates 4. **AI Recommendations**: Generate intelligent technology suggestions 5. **Validation & Enhancement**: Apply historical data and validation 6. **Response Generation**: Create comprehensive recommendation package 7. **Context Storage**: Store decision for future learning ## 🤖 AI Integration Details ### API Keys Configuration ```python # Your actual API keys are configured in the code CLAUDE_API_KEY = "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" OPENAI_API_KEY = "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" ``` ### Model Selection Strategy - **Claude 3.5 Sonnet**: Primary model for architecture analysis (180K context) - **GPT-4 Turbo**: Secondary validation and cross-checking (100K context) - **Rule-Based**: Fallback when AI models unavailable ### Token Management ```python # Progressive context feeding based on model capacity if needs_more_context(response): # Add Level 2 context enhanced_prompt = base_prompt + level_2_context response = call_ai_model(enhanced_prompt) if still_needs_context(response): # Add Level 3 context final_prompt = enhanced_prompt + level_3_context response = call_ai_model(final_prompt) ``` ## 💾 Database Integration ### Redis (Session Context) **Purpose**: Fast access to current conversation state **TTL**: 1 hour **Data Structure**: ```json { "last_analysis": {...}, "last_recommendations": {...}, "context_version": 2 } ``` ### PostgreSQL (Structured Storage) **Purpose**: Permanent storage of technology decisions **Schema**: ```sql CREATE TABLE tech_decisions ( id SERIAL PRIMARY KEY, project_id VARCHAR(255) UNIQUE, decision_data JSONB, timestamp TIMESTAMP, domain VARCHAR(100), complexity VARCHAR(100), version INTEGER DEFAULT 1 ); ``` ### Neo4j (Graph Relationships) **Purpose**: Technology relationship patterns and domain connections **Graph Structure**: ``` (Project)-[:HAS_DOMAIN]->(Domain) (Project)-[:USES_FRONTEND]->(Frontend) (Project)-[:USES_BACKEND]->(Backend) (Frontend)-[:COMPATIBLE_WITH]->(Backend) ``` ### ChromaDB (Vector Similarity) **Purpose**: Semantic search for similar projects **Process**: 1. Convert requirements to embeddings using SentenceTransformer 2. Store project embeddings with metadata 3. Query for similar projects using vector similarity 4. Return top 5 most similar past decisions ## 📡 API Endpoints ### Main Endpoint: `POST /api/v1/select` **Purpose**: Primary technology stack selection endpoint **Request Format**: ```json { "processed_requirements": { "comprehensive_analysis": {...}, "original_requirements": "Build an e-commerce platform...", "implementation_strategy": {...} }, "project_name": "E-commerce Platform", "project_id": "optional-for-context-continuity" } ``` **Response Format**: ```json { "success": true, "data": { "project_id": "uuid-generated", "analysis_metadata": { "processing_method": "multi_model_consensus", "confidence_score": 0.92, "ai_models_used": ["claude", "openai", "rule_based"] }, "business_problem_analysis": {...}, "technology_recommendations": {...}, "actionable_recommendations": { "primary_stack": {...}, "implementation_priorities": [...], "risk_mitigation_plan": {...} } } } ``` ### Health Check: `GET /health` **Purpose**: System health monitoring **Returns**: Component status, uptime, feature availability ### Debug Endpoints: - `GET /api/v1/debug/ai-models` - Test AI model connectivity - `GET /api/v1/context/{project_id}` - Retrieve project context - `GET /api/v1/system-status` - Comprehensive system status ## 🔄 Processing Methods The system supports multiple processing methods based on available resources: ### 1. **MULTI_MODEL_CONSENSUS** (Preferred) - Uses Claude + GPT-4 + Rule-based analysis - Highest confidence and accuracy - Cross-validates recommendations ### 2. **CONTEXT_ENHANCED** (Single AI Model) - Uses one AI model with enhanced context - Good performance when only one model available - Still includes validation layers ### 3. **RULE_BASED_ONLY** (Fallback) - Pure rule-based analysis - No AI models required - Basic but functional recommendations ## 🛡️ Quality Assurance ### Hallucination Prevention 1. **Technology Validation**: Check against known technology database 2. **Consistency Checking**: Ensure internal logical consistency 3. **Scale Validation**: Match technology to project scale 4. **Domain Validation**: Ensure domain-appropriate choices ### Confidence Scoring ```python # Multi-factor confidence calculation base_confidence = ai_model_confidence # 0.9 validation_boost = validation_score # 0.85 historical_factor = success_rate # 0.8 final_confidence = (base_confidence * 0.5) + (validation_boost * 0.3) + (historical_factor * 0.2) ``` ## 🚀 Development Setup ### Requirements ```bash pip install fastapi uvicorn anthropic openai pip install redis asyncpg neo4j chromadb pip install sentence-transformers loguru ``` ### Environment Variables ```bash # API Keys (also hardcoded in main.py) CLAUDE_API_KEY=your-claude-key OPENAI_API_KEY=your-openai-key # Database Connections REDIS_HOST=redis REDIS_PORT=6379 POSTGRES_URL=postgresql://user:pass@postgres:5432/db NEO4J_URI=bolt://neo4j:7687 CHROMA_HOST=chromadb CHROMA_PORT=8000 ``` ### Running the Service ```bash # Development python main.py # Production uvicorn main:app --host 0.0.0.0 --port 8002 # Docker docker build -t tech-stack-selector . docker run -p 8002:8002 tech-stack-selector ``` ## 🔧 Integration with n8n Pipeline ### Pipeline Flow ``` User Input → Requirement Processor (8001) → Tech Stack Selector (8002) → Architecture Designer (8003) → Code Generator (8004) ``` ### n8n Configuration ```json { "name": "Tech Stack Selection", "type": "HTTP Request", "url": "http://tech-stack-selector:8002/api/v1/select", "method": "POST", "body": "{{ $json.data }}" } ``` ## 📊 Monitoring & Debugging ### Health Monitoring - Component health checks for all databases - AI model connectivity testing - Feature availability status ### Logging - Structured logging with loguru - Request/response logging - Error tracking and debugging - Performance metrics ### Debug Tools - AI model connectivity testing - Context retrieval and inspection - System status comprehensive view - Storage system health checks ## 🎯 Future Enhancement Opportunities ### For Junior Developers 1. **Enhanced Business Logic** - Add more domain-specific patterns - Improve complexity scoring algorithms - Add industry-specific recommendations 2. **AI Model Improvements** - Add more AI models (Gemini, etc.) - Implement custom fine-tuned models - Add specialized domain models 3. **Context Optimization** - Implement more sophisticated embedding models - Add semantic chunking algorithms - Improve relevance scoring 4. **Storage Enhancements** - Add time-series analysis - Implement better caching strategies - Add backup and recovery systems 5. **API Improvements** - Add streaming responses - Implement webhooks for updates - Add batch processing capabilities ## 🐛 Common Issues & Solutions ### Issue: AI Model Not Responding **Symptoms**: 500 errors, timeout responses **Solution**: Check API keys, test connectivity via debug endpoint ### Issue: Context Not Persisting **Symptoms**: No conversation history, recommendations not improving **Solution**: Verify database connections, check Redis TTL settings ### Issue: Low Confidence Scores **Symptoms**: Confidence < 0.7, validation warnings **Solution**: Check input quality, verify AI model responses, review validation rules ### Issue: Poor Recommendations **Symptoms**: Inappropriate technology choices, mismatched scale **Solution**: Review business problem analysis, check domain classification, verify complexity scoring ## 📝 Code Examples ### Adding a New Domain ```python # In BusinessProblemAnalyzer._fallback_business_analysis() elif 'gaming' in domain or 'game' in requirements: business_model = "gaming" core_problem = "Create engaging gaming experience" # In ContextOptimizationEngine._get_business_indicators() 'gaming': ['real-time', 'multiplayer', 'graphics', 'performance'] ``` ### Adding Custom Validation Rules ```python # In HallucinationPreventionEngine._build_validation_rules() 'gaming_validation': { 'required_features': ['real_time', 'graphics', 'performance'], 'recommended_tech': ['unity', 'unreal', 'webgl'] } ``` ### Extending AI Prompts ```python # In TechnologyIntelligenceEngine._build_context_optimized_prompt() if domain == 'gaming': base_prompt += """ ## Gaming-Specific Considerations: - Real-time performance requirements - Graphics and rendering needs - Multiplayer architecture considerations """ ``` ## 📚 Additional Resources - **FastAPI Documentation**: https://fastapi.tiangolo.com/ - **Claude API**: https://docs.anthropic.com/ - **OpenAI API**: https://platform.openai.com/docs - **Neo4j Documentation**: https://neo4j.com/docs/ - **ChromaDB Guide**: https://docs.trychroma.com/ --- **Last Updated**: July 3, 2025 **Version**: 4.0.0 **Maintainer**: AI Development Pipeline Team **Status**: Production Ready ✅