Automated Development Pipeline - Complete Project Context & Progress Report 🎯 PROJECT VISION & OBJECTIVES Core Vision Create a fully automated development pipeline that takes developer requirements in natural language and outputs a complete, production-ready application with minimal human intervention. Success Metrics 80-90% reduction in manual coding for standard applications Complete project delivery in under 30 minutes Production-ready code quality (80%+ test coverage) Zero developer intervention for deployment pipeline Support for both monolithic and microservices architectures Developer Experience Goal Developer opens simple web interface Describes what they want in plain English Answers a few clarifying questions (if needed) Clicks "Generate" Gets a live, deployed application with URL Can access source code if needed πŸ—οΈ COMPLETE SYSTEM ARCHITECTURE High-Level Flow Developer Interface (React) ↓ API Gateway (Node.js + JWT) ↓ n8n Orchestration Engine ↓ β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚ AI Services β”‚ Code Servicesβ”‚ Infra Servicesβ”‚ β”‚- Requirementsβ”‚- Generator β”‚- Testing β”‚ β”‚- Tech Stack β”‚- Architectureβ”‚- Deployment β”‚ β”‚- Quality β”‚- Templates β”‚- Monitoring β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ ↓ Data Layer (PostgreSQL + MongoDB + Redis + RabbitMQ) ↓ Generated Applications (Local + CloudtopiAA) Technology Stack Matrix Phase 1 Implementation (Weeks 1-4): React + Node.js + PostgreSQL (Full JavaScript) React + .NET Core + PostgreSQL (Enterprise) Vue.js + Python FastAPI + PostgreSQL (Modern flexible) Phase 2 Implementation (Weeks 5-8): 4. Angular + Java Spring Boot + PostgreSQL (Enterprise Java) 5. Svelte + Go + PostgreSQL (Performance) 6. Next.js + Node.js + MongoDB (Modern full-stack) Phase 3 Implementation (Weeks 9-12): 7. React + Python Django + PostgreSQL (Data-heavy) 8. Vue.js + Ruby Rails + PostgreSQL (Rapid development) 9. Angular + .NET Core + SQL Server (Microsoft ecosystem) πŸ“ PROJECT STRUCTURE automated-dev-pipeline/ β”œβ”€β”€ infrastructure/ β”‚ β”œβ”€β”€ docker/ # Docker configurations β”‚ β”œβ”€β”€ terraform/ # Infrastructure as Code β”‚ β”œβ”€β”€ kubernetes/ # K8s manifests β”‚ β”œβ”€β”€ jenkins/ # CI/CD configurations β”‚ └── rabbitmq/ # Message queue configs β”œβ”€β”€ orchestration/ β”‚ └── n8n/ # Master workflow engine β”‚ β”œβ”€β”€ workflows/ # n8n workflow definitions β”‚ └── custom-nodes/ # Custom n8n nodes β”œβ”€β”€ services/ β”‚ β”œβ”€β”€ api-gateway/ # Central API gateway (Node.js) β”‚ β”œβ”€β”€ requirement-processor/ # AI requirement analysis (Python) β”‚ β”œβ”€β”€ tech-stack-selector/ # Technology selection AI (Python) β”‚ β”œβ”€β”€ architecture-designer/ # System architecture AI (Python) β”‚ β”œβ”€β”€ code-generator/ # Multi-framework code gen (Python) β”‚ β”œβ”€β”€ test-generator/ # Automated testing (Python) β”‚ └── deployment-manager/ # Deployment automation (Python) β”œβ”€β”€ frontend/ β”‚ └── developer-interface/ # React developer UI β”œβ”€β”€ databases/ β”‚ └── scripts/ # DB schemas and migrations β”œβ”€β”€ monitoring/ β”‚ └── configs/ # Prometheus, Grafana configs β”œβ”€β”€ generated_projects/ # Output directory β”œβ”€β”€ scripts/ β”‚ └── setup/ # Management scripts └── docs/ # Documentation πŸ”§ CORE SYSTEM DESIGN DECISIONS 1. Service Communication Architecture Primary Flow: Frontend β†’ API Gateway β†’ n8n β†’ Services Direct Communication: Services ↔ Services (performance-critical) Async Operations: Services β†’ RabbitMQ β†’ Services Real-time Updates: Services β†’ Redis Pub/Sub β†’ Frontend 2. Error Handling Strategy Level 1: Service-Level (3 immediate retries) Level 2: n8n Workflow-Level (exponential backoff, 5 attempts) Level 3: Dead Letter Queue (manual intervention) Level 4: Compensation Transactions (rollback) 3. State Management PostgreSQL: Current state + Event log + Metadata Redis: Fast state lookup + Session data + Pub/Sub MongoDB: Large objects (generated code, templates) State Machine: 15+ project states with audit trail 4. Security Model External: JWT tokens for user authentication Internal: mTLS + Service identity tokens API Gateway: Rate limiting, input validation, CORS Data: Encryption at rest and in transit 5. Code Storage Strategy Generated Projects: Distributed file system (mounted volumes) Code Templates: MongoDB (versioned, searchable) Metadata: PostgreSQL (relational data) Version Control: Gitea/GitLab integration πŸ“… COMPLETE IMPLEMENTATION TIMELINE PHASE 1: FOUNDATION (WEEKS 1-2) - CURRENT FOCUS Week 1: Infrastructure Setup βœ… COMPLETED: Project directory structure creation βœ… COMPLETED: Database schemas (PostgreSQL, MongoDB, Redis) βœ… COMPLETED: Docker infrastructure configuration βœ… COMPLETED: 6 Python microservices with complete FastAPI code (158 lines each) βœ… COMPLETED: 1 Node.js API Gateway with complete Express.js code (2,960 bytes) βœ… COMPLETED: RabbitMQ message queue setup and working βœ… COMPLETED: Complete startup script suite (7 management scripts) βœ… COMPLETED: All infrastructure services operational Week 2: Core Service Templates & Basic Integration πŸ”„ NEXT: Add application services to docker-compose.yml ⏳ PENDING: Create missing Dockerfiles for Python services ⏳ PENDING: Create requirements.txt files for Python services ⏳ PENDING: Service-to-service communication setup ⏳ PENDING: Basic n8n workflows for service coordination ⏳ PENDING: Health monitoring and logging implementation PHASE 2: AI SERVICES & ORCHESTRATION (WEEKS 3-4) Week 3: Requirements Processing & Tech Stack Selection ⏳ Claude API integration for requirement analysis ⏳ Natural language processing for requirement validation ⏳ Technical PRD generation from user input ⏳ AI-powered technology stack selection algorithm ⏳ Framework compatibility matrix implementation ⏳ n8n workflows for AI service coordination Week 4: Architecture Design & Planning ⏳ Monolithic vs microservices decision engine ⏳ Database schema generation from requirements ⏳ API contract generation ⏳ System architecture diagram generation ⏳ Component relationship mapping ⏳ Infrastructure requirement calculation PHASES 3-6: REMAINING IMPLEMENTATION [Detailed timeline for Weeks 5-12 covering Code Generation, Testing, Deployment, and Frontend development] πŸ“Š CURRENT STATUS & DETAILED PROGRESS βœ… PHASE 1 FOUNDATION - 85% COMPLETE Infrastructure Services: 100% OPERATIONAL PostgreSQL: Status: βœ… Healthy and connected Port: 5432 Database: dev_pipeline User: pipeline_admin Connection: Tested and working Redis: Status: βœ… Healthy and connected (FIXED authentication issue) Port: 6379 Password: redis_secure_2024 Connection: Tested with authentication MongoDB: Status: βœ… Healthy and connected Port: 27017 Connection: Tested and working RabbitMQ: Status: βœ… Healthy with management UI AMQP Port: 5672 Management UI: http://localhost:15672 Username: pipeline_admin Password: rabbit_secure_2024 Connection: Tested and working Application Services: CODE COMPLETE, CONTAINERIZATION PENDING API Gateway (Node.js): Code: βœ… Complete (2,960 bytes server.js) Dependencies: βœ… Complete (package.json with 13 dependencies) Dockerfile: βœ… Complete (529 bytes) Status: Ready to containerize Port: 8000 Requirement Processor (Python): Code: βœ… Complete (158 lines main.py, 4,298 bytes) Dependencies: ❌ Missing requirements.txt Dockerfile: ❌ Empty (0 bytes) Status: Code tested manually, needs containerization Port: 8001 Tech Stack Selector (Python): Code: βœ… Complete (158 lines main.py, 4,278 bytes) Dependencies: ❌ Missing requirements.txt Dockerfile: ❌ Empty (0 bytes) Status: Ready for containerization Port: 8002 Architecture Designer (Python): Code: βœ… Complete (158 lines main.py, 4,298 bytes) Dependencies: ❌ Missing requirements.txt Dockerfile: ❌ Empty (0 bytes) Status: Ready for containerization Port: 8003 Code Generator (Python): Code: βœ… Complete (158 lines main.py, 4,228 bytes) Dependencies: ❌ Missing requirements.txt Dockerfile: ❌ Empty (0 bytes) Status: Ready for containerization Port: 8004 Test Generator (Python): Code: βœ… Complete (158 lines main.py, 4,228 bytes) Dependencies: ❌ Missing requirements.txt Dockerfile: ❌ Empty (0 bytes) Status: Ready for containerization Port: 8005 Deployment Manager (Python): Code: βœ… Complete (158 lines main.py, 4,268 bytes) Dependencies: ❌ Missing requirements.txt Dockerfile: ❌ Empty (0 bytes) Status: Ready for containerization Port: 8006 Management Scripts: 100% COMPLETE Located in scripts/setup/: βœ… start.sh (7,790 bytes) - Main startup script (FIXED Redis auth) βœ… stop.sh (1,812 bytes) - Stop all services βœ… status.sh (4,561 bytes) - Check system status βœ… validate-phase1.sh (5,455 bytes) - Phase 1 validation βœ… logs.sh (1,060 bytes) - View service logs βœ… dev.sh (3,391 bytes) - Development mode βœ… cleanup.sh (1,701 bytes) - Clean up resources Project Configuration Files docker-compose.yml: Infrastructure services: βœ… Complete Application services: ❌ Not added yet Networks and volumes: βœ… Complete Environment Configuration: βœ… .env file with all required variables βœ… Database passwords configured βœ… Service configurations Database Schemas: βœ… Complete PostgreSQL, MongoDB, Redis setup πŸ”§ KNOWN ISSUES AND SOLUTIONS βœ… RESOLVED ISSUES Redis Authentication Issue: Problem: Startup script couldn't connect to Redis Root Cause: Script missing password authentication Solution: Fixed startup script to use redis-cli -a redis_secure_2024 ping Status: βœ… RESOLVED Docker Compose Version Warning: Problem: Obsolete version attribute warning Status: ⚠️ Cosmetic issue, doesn't affect functionality ⏳ PENDING ISSUES TO ADDRESS Python Service Containerization: Issue: Missing requirements.txt and Dockerfiles for 6 Python services Impact: Cannot start services with docker-compose Solution Needed: Create standardized requirements.txt and Dockerfiles Docker Compose Service Definitions: Issue: Application services not defined in docker-compose.yml Impact: Cannot start full system with single command Solution Needed: Add 7 service definitions to docker-compose.yml πŸ“‹ DETAILED NEXT STEPS IMMEDIATE ACTIONS (Next 1-2 Hours) Step 1: Create Requirements Files All Python services use the same dependencies: fastapi==0.104.1 uvicorn==0.24.0 loguru==0.7.2 pydantic==2.11.4 Step 2: Create Dockerfiles Standardized Dockerfile template for Python services: dockerfileFROM python:3.12-slim WORKDIR /app COPY requirements.txt . RUN pip install -r requirements.txt COPY src/ ./src/ EXPOSE 800X CMD ["uvicorn", "src.main:app", "--host", "0.0.0.0", "--port", "800X"] Step 3: Add Services to docker-compose.yml Add definitions for all 7 application services with proper networking, dependencies, and environment variables. Step 4: Test Complete System Run ./scripts/setup/start.sh to start all 11 services (4 infrastructure + 7 application). Step 5: Run Phase 1 Validation Execute ./scripts/setup/validate-phase1.sh to confirm Phase 1 completion. PHASE 1 COMPLETION CRITERIA βœ… All 4 infrastructure services healthy ⏳ All 7 application services starting successfully ⏳ API Gateway routing to all microservices ⏳ Health endpoints responding on all services ⏳ Service-to-service communication established ⏳ Phase 1 validation script passing 100% πŸŽ›οΈ DETAILED SERVICE SPECIFICATIONS Infrastructure Services PostgreSQL Database Image: postgres:15 Port: 5432 Database: dev_pipeline User: pipeline_admin Password: pipeline_password Health: βœ… Confirmed working Tables: 8 main tables for project state management Redis Cache Image: redis:7-alpine Port: 6379 Password: redis_secure_2024 Persistence: AOF enabled Health: βœ… Confirmed working with authentication Usage: Caching, sessions, pub/sub MongoDB Document Store Image: mongo:7 Port: 27017 User: pipeline_user Password: pipeline_password Health: βœ… Confirmed working Usage: Code templates, generated projects RabbitMQ Message Queue Image: Custom (automated-dev-pipeline-rabbitmq) AMQP Port: 5672 Management UI: 15672 User: pipeline_admin Password: rabbit_secure_2024 Health: βœ… Confirmed working Plugins: Management, Prometheus, Federation Application Services API Gateway (api-gateway) Technology: Node.js + Express Port: 8000 Dependencies: 13 packages (express, cors, redis, etc.) Features: JWT auth, rate limiting, WebSocket, service discovery Code Status: βœ… Complete (2,960 bytes) Container Status: βœ… Ready Requirement Processor (requirement-processor) Technology: Python + FastAPI Port: 8001 Purpose: Natural language processing, PRD generation Code Status: βœ… Complete (158 lines, 4,298 bytes) Container Status: ⏳ Needs Dockerfile + requirements.txt Tech Stack Selector (tech-stack-selector) Technology: Python + FastAPI Port: 8002 Purpose: AI-powered technology selection Code Status: βœ… Complete (158 lines, 4,278 bytes) Container Status: ⏳ Needs Dockerfile + requirements.txt Architecture Designer (architecture-designer) Technology: Python + FastAPI Port: 8003 Purpose: System architecture design, database schema generation Code Status: βœ… Complete (158 lines, 4,298 bytes) Container Status: ⏳ Needs Dockerfile + requirements.txt Code Generator (code-generator) Technology: Python + FastAPI Port: 8004 Purpose: Multi-framework code generation Code Status: βœ… Complete (158 lines, 4,228 bytes) Container Status: ⏳ Needs Dockerfile + requirements.txt Test Generator (test-generator) Technology: Python + FastAPI Port: 8005 Purpose: Automated test generation (unit, integration, E2E) Code Status: βœ… Complete (158 lines, 4,228 bytes) Container Status: ⏳ Needs Dockerfile + requirements.txt Deployment Manager (deployment-manager) Technology: Python + FastAPI Port: 8006 Purpose: Local and cloud deployment automation Code Status: βœ… Complete (158 lines, 4,268 bytes) Container Status: ⏳ Needs Dockerfile + requirements.txt πŸ—ƒοΈ DATABASE ARCHITECTURE PostgreSQL Tables (dev_pipeline database) projects: Main project entity with status tracking tech_stack_decisions: Technology selection results system_architectures: Architecture design artifacts code_generations: Generated code tracking test_results: Test execution results deployment_logs: Deployment history service_health: Service monitoring project_state_transitions: Audit trail MongoDB Collections code_templates: Framework-specific templates framework_configs: Technology configurations generated_projects: Complete project storage ai_prompts: AI prompt templates Redis Data Structures Cache Keys: API responses, computed results Session Data: User session management Pub/Sub Channels: Real-time updates Queue Data: Background task processing πŸ”— INTEGRATION POINTS Current Integrations Docker Network: All services on pipeline_network Service Discovery: Via API Gateway routing Health Monitoring: All services expose /health endpoints Logging: Centralized logging with loguru Planned Integrations Claude API: Natural language processing, code generation CloudtopiAA API: Cloud deployment and infrastructure n8n Workflows: Service orchestration Git APIs: Repository management (Gitea/GitLab) 🚨 CRITICAL SUCCESS FACTORS Infrastructure Stability: βœ… ACHIEVED - All 4 services operational Service Containerization: πŸ”„ IN PROGRESS - Need to complete Python services Inter-service Communication: ⏳ PENDING - Need service mesh setup Error Handling: ⏳ PENDING - Need comprehensive error recovery Performance: ⏳ PENDING - Need sub-30-minute generation time Quality Gates: ⏳ PENDING - Need production-ready code standards 🎯 PROJECT CONTEXT RESTORATION CHECKLIST When resuming this project, verify: Environment Check βœ… Are we in the /Users/yasha/Documents/Tech4biz-Code-Generator/automated-dev-pipeline directory? βœ… Do all 7 services exist with proper code files? βœ… Is docker-compose.yml present with infrastructure services? βœ… Are database scripts in place? βœ… Can we run ./scripts/setup/start.sh successfully? Infrastructure Verification βœ… PostgreSQL: Accessible on localhost:5432 βœ… Redis: Accessible with password on localhost:6379 βœ… MongoDB: Accessible on localhost:27017 βœ… RabbitMQ: Management UI on http://localhost:15672 Code Status Verification βœ… API Gateway: Complete with Dockerfile βœ… Python Services: All have 158-line main.py files ❌ Python Services: Missing requirements.txt and Dockerfiles ❌ docker-compose.yml: Missing application service definitions Next Session Action Plan Create requirements.txt for all 6 Python services Create Dockerfiles for all 6 Python services Add service definitions to docker-compose.yml Test complete system startup Run Phase 1 validation Begin Phase 2 planning (n8n + AI integration) πŸ“ CURRENT POSITION SUMMARY Phase 1 Status: 85% Complete Infrastructure: 100% Operational βœ… Application Code: 100% Complete βœ… Containerization: 15% Complete (1/7 services) πŸ”„ Integration: 0% Complete ⏳ Immediate Goal: Complete Phase 1 by containerizing all application services Next Milestone: Phase 1 validation passing 100% β†’ Begin Phase 2 AI Services Integration Time Estimate to Phase 1 Completion: 2-3 hours Overall Project Progress: Week 1.8 of 12-week timeline