codenuk_backend_mine/services/ai-analysis-service/ai-analyze.py.backup
2025-11-07 08:54:52 +05:30

6108 lines
301 KiB
Python
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

#!/usr/bin/env python3
"""
Complete AI Repository Analysis Tool with Memory System
Automatically analyzes ALL files in a repository without limits.
Features:
- Analyzes ALL files in the repository (no max-files limit)
- No user query required - fully automated analysis
- Memory-enhanced analysis with learning capabilities
- Comprehensive PDF report generation
- Security, architecture, and code quality assessment
Usage:
python ai-analyze.py /path/to/repo --output analysis.pdf
Example:
python ai-analyze.py ./my-project --output complete_analysis.pdf
"""
import os
import asyncio
import hashlib
import json
import uuid
from pathlib import Path
from typing import Dict, List, Optional, Tuple, Any
from datetime import datetime, timedelta
from dataclasses import dataclass, asdict, field
from collections import defaultdict, Counter
import logging
import tempfile
import shutil
import re
import concurrent.futures
import threading
from functools import lru_cache
# Core packages
import anthropic
from dotenv import load_dotenv
import git
import redis
import pymongo
import psycopg2
from psycopg2.extras import RealDictCursor
import numpy as np
# PDF generation
from reportlab.lib.pagesizes import A4
from reportlab.lib.styles import getSampleStyleSheet, ParagraphStyle
from reportlab.lib.enums import TA_CENTER, TA_LEFT
from reportlab.platypus import SimpleDocTemplate, Paragraph, Spacer, PageBreak, Table, TableStyle, Preformatted
from reportlab.lib import colors
from reportlab.graphics.shapes import Rect, String, Drawing
from reportlab.graphics.charts.piecharts import Pie
from reportlab.graphics.charts.barcharts import VerticalBarChart
from reportlab.lib.units import inch
# Enhanced dataclasses for memory system
@dataclass
class MemoryRecord:
id: str
timestamp: datetime
memory_type: str # 'episodic', 'persistent', 'working'
content: Dict[str, Any]
embeddings: Optional[List[float]] = None
metadata: Optional[Dict[str, Any]] = None
expiry: Optional[datetime] = None
@dataclass
class CodeAnalysisMemory:
repo_id: str
file_path: str
analysis_hash: str
analysis_data: Dict[str, Any]
embedding: List[float]
last_updated: datetime
access_count: int = 0
relevance_score: float = 1.0
@dataclass
class EpisodicMemory:
session_id: str
user_query: str
ai_response: str
repo_context: str
timestamp: datetime
embedding: List[float]
metadata: Dict[str, Any]
@dataclass
class PersistentMemory:
fact_id: str
content: str
category: str # 'code_pattern', 'best_practice', 'vulnerability', 'architecture'
confidence: float
embedding: List[float]
source_repos: List[str]
created_at: datetime
last_accessed: datetime
access_frequency: int = 0
@dataclass
class FileAnalysis:
path: str
language: str
lines_of_code: int
complexity_score: float
issues_found: List[str]
recommendations: List[str]
detailed_analysis: str
severity_score: float
content: str = '' # Add content field to store actual file content
def __post_init__(self):
"""Ensure all fields contain safe types for JSON serialization."""
# Convert path to string
if not isinstance(self.path, str):
self.path = str(self.path)
# Ensure issues_found is a list of strings
if not isinstance(self.issues_found, list):
if isinstance(self.issues_found, tuple):
self.issues_found = [str(i) for i in self.issues_found]
else:
self.issues_found = []
else:
self.issues_found = [str(i) if not isinstance(i, str) else i for i in self.issues_found]
# Ensure recommendations is a list of strings
if not isinstance(self.recommendations, list):
if isinstance(self.recommendations, tuple):
self.recommendations = [str(r) for r in self.recommendations]
else:
self.recommendations = []
else:
self.recommendations = [str(r) if not isinstance(r, str) else r for r in self.recommendations]
# Ensure detailed_analysis is a string
if not isinstance(self.detailed_analysis, str):
self.detailed_analysis = str(self.detailed_analysis)
@dataclass
class RepositoryAnalysis:
repo_path: str
total_files: int
total_lines: int
languages: Dict[str, int]
architecture_assessment: str
security_assessment: str
code_quality_score: float
file_analyses: List[FileAnalysis]
executive_summary: str
high_quality_files: List[str] = field(default_factory=list)
class MemoryManager:
"""Advanced memory management system for AI repository analysis."""
def __init__(self, config: Dict[str, Any]):
self.config = config
self.setup_logging()
# Initialize Claude client for embeddings
self.claude_client = anthropic.Anthropic(api_key=config.get('anthropic_api_key', ''))
# Initialize database connections
self.setup_databases()
# Memory configuration
self.working_memory_ttl = 3600 # 1 hour
self.episodic_retention_days = 365 # 1 year
self.persistent_memory_threshold = 0.8 # Confidence threshold for persistence
def setup_logging(self):
logging.basicConfig(level=logging.INFO)
self.logger = logging.getLogger(__name__)
def setup_databases(self):
"""Initialize all database connections with enhanced error handling."""
try:
# Redis for working memory (temporary, fast access) with localhost fallback
redis_host = self.config.get('redis_host', 'localhost')
redis_port = self.config.get('redis_port', 6380) # Use 6380 to avoid conflicts
redis_password = self.config.get('redis_password', 'redis_secure_2024')
self.redis_client = redis.Redis(
host=redis_host,
port=redis_port,
password=redis_password,
db=self.config.get('redis_db', 0),
decode_responses=True,
socket_connect_timeout=5,
socket_timeout=5
)
self.redis_client.ping()
self.logger.info(f"✅ Redis connected to {redis_host}:{redis_port}")
except Exception as e:
self.logger.warning(f"⚠️ Redis connection failed: {e}")
self.redis_client = None
try:
# MongoDB for documents and episodic memory with localhost fallback
mongo_url = self.config.get('mongodb_url', 'mongodb://pipeline_admin:mongo_secure_2024@localhost:27017/')
self.mongo_client = pymongo.MongoClient(mongo_url, serverSelectionTimeoutMS=5000)
self.mongo_client.admin.command('ping')
self.mongo_db = self.mongo_client[self.config.get('mongodb_name', 'repo_analyzer')]
# Collections
self.episodic_collection = self.mongo_db['episodic_memories']
self.analysis_collection = self.mongo_db['code_analyses']
self.persistent_collection = self.mongo_db['persistent_memories']
self.repo_metadata_collection = self.mongo_db['repository_metadata']
self.logger.info("✅ MongoDB connected successfully")
except Exception as e:
self.logger.warning(f"⚠️ MongoDB connection failed: {e}")
self.mongo_client = None
self.mongo_db = None
try:
# PostgreSQL with localhost fallback
self.pg_conn = psycopg2.connect(
host=self.config.get('postgres_host', 'localhost'),
port=self.config.get('postgres_port', 5432),
database=self.config.get('postgres_db', 'dev_pipeline'),
user=self.config.get('postgres_user', 'pipeline_admin'),
password=self.config.get('postgres_password', 'secure_pipeline_2024'),
connect_timeout=5
)
# Check if pgvector is available
try:
with self.pg_conn.cursor() as cur:
cur.execute("SELECT 1 FROM pg_extension WHERE extname = 'vector';")
self.has_vector = cur.fetchone() is not None
except:
self.has_vector = False
self.logger.info("✅ PostgreSQL connected successfully")
except Exception as e:
self.logger.warning(f"⚠️ PostgreSQL connection failed: {e}")
self.pg_conn = None
self.has_vector = False
def generate_embedding(self, text: str) -> List[float]:
"""Generate embedding for text using Claude API."""
try:
# Use Claude to generate semantic embeddings
# Truncate text if too long for Claude API
if len(text) > 8000:
text = text[:8000] + "..."
prompt = f"""
Convert the following text into a 384-dimensional numerical vector that represents its semantic meaning.
The vector should be suitable for similarity search and clustering.
Text: {text}
Return only a JSON array of 384 floating-point numbers between -1 and 1, like this:
[0.123, -0.456, 0.789, ...]
"""
# Use the configured Claude model
message = self.claude_client.messages.create(
model=os.getenv("CLAUDE_MODEL", "claude-3-5-haiku-latest"),
max_tokens=2000,
temperature=0.1,
messages=[{"role": "user", "content": prompt}]
)
response_text = message.content[0].text.strip()
# Extract JSON array from response
# Find JSON array in response
json_match = re.search(r'\[[\d\.,\s-]+\]', response_text)
if json_match:
embedding = json.loads(json_match.group())
if len(embedding) == 384:
return embedding
# Fallback: generate deterministic embedding from text hash
return self._generate_fallback_embedding(text)
except Exception as e:
self.logger.error(f"Claude embedding generation failed: {e}")
return self._generate_fallback_embedding(text)
def _generate_fallback_embedding(self, text: str) -> List[float]:
"""Generate fallback embedding using text hash."""
try:
import hashlib
import struct
# Create a deterministic hash-based embedding
hash_obj = hashlib.sha256(text.encode('utf-8'))
hash_bytes = hash_obj.digest()
# Convert to 384-dimensional vector
embedding = []
for i in range(0, len(hash_bytes), 4):
if len(embedding) >= 384:
break
chunk = hash_bytes[i:i+4]
if len(chunk) == 4:
# Convert 4 bytes to float and normalize
value = struct.unpack('>I', chunk)[0] / (2**32 - 1) # Normalize to 0-1
embedding.append(value * 2 - 1) # Scale to -1 to 1
# Pad to exactly 384 dimensions
while len(embedding) < 384:
embedding.append(0.0)
return embedding[:384]
except Exception as e:
self.logger.error(f"Fallback embedding generation failed: {e}")
return [0.0] * 384
def calculate_content_hash(self, content: str) -> str:
"""Calculate SHA-256 hash of content for change detection."""
return hashlib.sha256(content.encode()).hexdigest()
async def store_working_memory(self, key: str, data: Dict[str, Any], ttl: Optional[int] = None) -> bool:
"""Store temporary data in working memory (Redis)."""
try:
ttl = ttl or self.working_memory_ttl
serialized_data = json.dumps(data, default=str)
self.redis_client.setex(f"working:{key}", ttl, serialized_data)
return True
except Exception as e:
self.logger.error(f"Working memory storage failed: {e}")
return False
async def get_working_memory(self, key: str) -> Optional[Dict[str, Any]]:
"""Retrieve data from working memory."""
try:
data = self.redis_client.get(f"working:{key}")
return json.loads(data) if data else None
except Exception as e:
self.logger.error(f"Working memory retrieval failed: {e}")
return None
async def store_episodic_memory(self, session_id: str, user_query: str,
ai_response: str, repo_context: str,
metadata: Optional[Dict] = None) -> str:
"""Store interaction in episodic memory."""
try:
memory_id = str(uuid.uuid4())
# Generate embeddings
query_embedding = self.generate_embedding(user_query)
response_embedding = self.generate_embedding(ai_response)
# Store in MongoDB
episodic_record = {
'memory_id': memory_id,
'session_id': session_id,
'user_query': user_query,
'ai_response': ai_response,
'repo_context': repo_context,
'timestamp': datetime.utcnow(),
'metadata': metadata or {}
}
self.episodic_collection.insert_one(episodic_record)
# Store embeddings in PostgreSQL for similarity search
with self.pg_conn.cursor() as cur:
cur.execute("""
INSERT INTO query_embeddings
(session_id, query_text, query_embedding, response_embedding, repo_context, metadata)
VALUES (%s, %s, %s, %s, %s, %s)
""", (
session_id, user_query, query_embedding, response_embedding,
repo_context, json.dumps(metadata or {})
))
self.pg_conn.commit()
self.logger.info(f"Episodic memory stored: {memory_id}")
return memory_id
except Exception as e:
self.logger.error(f"Episodic memory storage failed: {e}")
return ""
async def retrieve_episodic_memories(self, query: str, repo_context: str = "",
limit: int = 10, similarity_threshold: float = 0.7) -> List[Dict]:
"""Retrieve relevant episodic memories based on query similarity."""
try:
query_embedding = self.generate_embedding(query)
with self.pg_conn.cursor(cursor_factory=RealDictCursor) as cur:
# Find similar queries using cosine similarity
cur.execute("""
SELECT session_id, query_text, repo_context, timestamp, metadata,
1 - (query_embedding <=> %s::vector) as similarity
FROM query_embeddings
WHERE (%s = '' OR repo_context = %s)
AND 1 - (query_embedding <=> %s::vector) > %s
ORDER BY similarity DESC
LIMIT %s
""", (query_embedding, repo_context, repo_context, query_embedding, similarity_threshold, limit))
similar_queries = cur.fetchall()
# Fetch full episodic records from MongoDB
memories = []
for query_record in similar_queries:
episodic_record = self.episodic_collection.find_one({
'session_id': query_record['session_id'],
'timestamp': query_record['timestamp']
})
if episodic_record:
episodic_record['similarity_score'] = float(query_record['similarity'])
memories.append(episodic_record)
return memories
except Exception as e:
self.logger.error(f"Episodic memory retrieval failed: {e}")
return []
async def store_persistent_memory(self, content: str, category: str,
confidence: float, source_repos: List[str]) -> str:
"""Store long-term knowledge in persistent memory."""
try:
fact_id = str(uuid.uuid4())
embedding = self.generate_embedding(content)
# Store in MongoDB
persistent_record = {
'fact_id': fact_id,
'content': content,
'category': category,
'confidence': confidence,
'source_repos': source_repos,
'created_at': datetime.utcnow(),
'last_accessed': datetime.utcnow(),
'access_frequency': 1
}
self.persistent_collection.insert_one(persistent_record)
# Store embedding in PostgreSQL
with self.pg_conn.cursor() as cur:
if self.has_vector:
cur.execute("""
INSERT INTO knowledge_embeddings
(fact_id, content, category, embedding, confidence, source_repos)
VALUES (%s, %s, %s, %s, %s, %s)
""", (fact_id, content, category, embedding, confidence, source_repos))
else:
cur.execute("""
INSERT INTO knowledge_embeddings
(fact_id, content, category, confidence, source_repos)
VALUES (%s, %s, %s, %s, %s)
""", (fact_id, content, category, confidence, source_repos))
self.pg_conn.commit()
self.logger.info(f"Persistent memory stored: {fact_id}")
return fact_id
except Exception as e:
self.logger.error(f"Persistent memory storage failed: {e}")
return ""
async def retrieve_persistent_memories(self, query: str, category: str = "",
limit: int = 20, similarity_threshold: float = 0.6) -> List[Dict]:
"""Retrieve relevant persistent knowledge."""
try:
query_embedding = self.generate_embedding(query)
with self.pg_conn.cursor(cursor_factory=RealDictCursor) as cur:
# Check if table exists first
cur.execute("""
SELECT EXISTS (
SELECT FROM information_schema.tables
WHERE table_name = 'knowledge_embeddings'
);
""")
table_exists = cur.fetchone()[0]
if not table_exists:
self.logger.warning("knowledge_embeddings table does not exist, returning empty results")
return []
# Build WHERE clause dynamically
if hasattr(self, 'has_vector') and self.has_vector:
where_conditions = ["1 - (embedding <=> %s::vector) > %s"]
params = [query_embedding, similarity_threshold]
else:
# Fallback to text-based search
where_conditions = ["content ILIKE %s"]
params = [f"%{query}%"]
if category:
where_conditions.append("category = %s")
params.append(category)
where_clause = " AND ".join(where_conditions)
params.extend([limit])
if hasattr(self, 'has_vector') and self.has_vector:
cur.execute(f"""
SELECT fact_id, content, category, confidence, source_repos,
1 - (embedding <=> %s::vector) as similarity,
created_at, last_accessed, access_frequency
FROM knowledge_embeddings
WHERE {where_clause}
ORDER BY similarity DESC, confidence DESC, access_frequency DESC
LIMIT %s
""", params)
else:
cur.execute(f"""
SELECT fact_id, content, category, confidence, source_repos,
0.8 as similarity,
created_at, last_accessed, access_frequency
FROM knowledge_embeddings
WHERE {where_clause}
ORDER BY confidence DESC, access_frequency DESC
LIMIT %s
""", params)
results = cur.fetchall()
# Update access frequency
for result in results:
cur.execute("""
UPDATE knowledge_embeddings
SET last_accessed = CURRENT_TIMESTAMP,
access_frequency = access_frequency + 1
WHERE fact_id = %s
""", (result['fact_id'],))
self.pg_conn.commit()
return [dict(result) for result in results]
except Exception as e:
self.logger.error(f"Persistent memory retrieval failed: {e}")
return []
async def store_code_analysis(self, repo_id: str, file_path: str,
analysis_data: Dict[str, Any]) -> str:
"""Store code analysis with embeddings for future retrieval."""
try:
content_hash = self.calculate_content_hash(json.dumps(analysis_data, sort_keys=True))
# Create searchable content for embedding
searchable_content = f"""
File: {file_path}
Language: {analysis_data.get('language', 'Unknown')}
Issues: {' '.join(analysis_data.get('issues_found', []))}
Recommendations: {' '.join(analysis_data.get('recommendations', []))}
Analysis: {analysis_data.get('detailed_analysis', '')}
"""
embedding = self.generate_embedding(searchable_content)
# Store in MongoDB
analysis_record = {
'repo_id': repo_id,
'file_path': file_path,
'content_hash': content_hash,
'analysis_data': analysis_data,
'created_at': datetime.utcnow(),
'last_accessed': datetime.utcnow(),
'access_count': 1
}
# Upsert to handle updates
self.analysis_collection.update_one(
{'repo_id': repo_id, 'file_path': file_path},
{'$set': analysis_record},
upsert=True
)
# Store embedding in PostgreSQL
with self.pg_conn.cursor() as cur:
if self.has_vector:
cur.execute("""
INSERT INTO code_embeddings (repo_id, file_path, content_hash, embedding, metadata)
VALUES (%s, %s, %s, %s, %s)
ON CONFLICT (repo_id, file_path, content_hash)
DO UPDATE SET last_accessed = CURRENT_TIMESTAMP
""", (
repo_id, file_path, content_hash, embedding,
json.dumps({
'language': analysis_data.get('language'),
'lines_of_code': analysis_data.get('lines_of_code', 0),
'severity_score': analysis_data.get('severity_score', 5.0)
})
))
else:
cur.execute("""
INSERT INTO code_embeddings (repo_id, file_path, content_hash, embedding_text, metadata)
VALUES (%s, %s, %s, %s, %s)
ON CONFLICT (repo_id, file_path, content_hash)
DO UPDATE SET last_accessed = CURRENT_TIMESTAMP
""", (
repo_id, file_path, content_hash, json.dumps(embedding),
json.dumps({
'language': analysis_data.get('language'),
'lines_of_code': analysis_data.get('lines_of_code', 0),
'severity_score': analysis_data.get('severity_score', 5.0)
})
))
self.pg_conn.commit()
return content_hash
except Exception as e:
self.logger.error(f"Code analysis storage failed: {e}")
return ""
async def search_similar_code(self, query: str, repo_id: str = "",
limit: int = 10) -> List[Dict]:
"""Search for similar code analyses."""
try:
query_embedding = self.generate_embedding(query)
with self.pg_conn.cursor(cursor_factory=RealDictCursor) as cur:
# Check if table exists first
cur.execute("""
SELECT EXISTS (
SELECT FROM information_schema.tables
WHERE table_name = 'code_embeddings'
);
""")
table_exists = cur.fetchone()[0]
if not table_exists:
self.logger.warning("code_embeddings table does not exist, returning empty results")
return []
where_clause = "WHERE 1=1"
params = [query_embedding]
if repo_id:
where_clause += " AND repo_id = %s"
params.append(repo_id)
params.append(limit)
cur.execute(f"""
SELECT repo_id, file_path, content_hash, metadata,
1 - (embedding <=> %s::vector) as similarity
FROM code_embeddings
{where_clause}
ORDER BY similarity DESC
LIMIT %s
""", params)
results = cur.fetchall()
# Fetch full analysis data from MongoDB
enriched_results = []
for result in results:
analysis = self.analysis_collection.find_one({
'repo_id': result['repo_id'],
'file_path': result['file_path']
})
if analysis:
analysis['similarity_score'] = float(result['similarity'])
enriched_results.append(analysis)
return enriched_results
except Exception as e:
self.logger.error(f"Similar code search failed: {e}")
return []
async def cleanup_old_memories(self):
"""Clean up old episodic memories and update access patterns."""
try:
cutoff_date = datetime.utcnow() - timedelta(days=self.episodic_retention_days)
# Clean up old episodic memories
result = self.episodic_collection.delete_many({
'timestamp': {'$lt': cutoff_date}
})
self.logger.info(f"Cleaned up {result.deleted_count} old episodic memories")
# Clean up corresponding query embeddings
with self.pg_conn.cursor() as cur:
cur.execute("DELETE FROM query_embeddings WHERE timestamp < %s", (cutoff_date,))
self.pg_conn.commit()
# Update persistent memory relevance based on access patterns
await self.update_persistent_memory_relevance()
except Exception as e:
self.logger.error(f"Memory cleanup failed: {e}")
async def update_persistent_memory_relevance(self):
"""Update relevance scores for persistent memories based on access patterns."""
try:
with self.pg_conn.cursor() as cur:
# Calculate relevance based on recency and frequency
cur.execute("""
UPDATE knowledge_embeddings
SET confidence = LEAST(confidence * (
CASE
WHEN EXTRACT(EPOCH FROM (CURRENT_TIMESTAMP - last_accessed)) / 86400 < 30
THEN 1.1
ELSE 0.95
END *
(1.0 + LOG(access_frequency + 1) / 10.0)
), 1.0)
""")
self.pg_conn.commit()
except Exception as e:
self.logger.error(f"Relevance update failed: {e}")
async def get_memory_stats(self) -> Dict[str, Any]:
"""Get comprehensive memory system statistics."""
try:
stats = {}
# Working memory stats (Redis)
working_keys = self.redis_client.keys("working:*")
stats['working_memory'] = {
'total_keys': len(working_keys),
'memory_usage': self.redis_client.info()['used_memory_human']
}
# Episodic memory stats (MongoDB)
stats['episodic_memory'] = {
'total_records': self.episodic_collection.count_documents({}),
'recent_interactions': self.episodic_collection.count_documents({
'timestamp': {'$gte': datetime.utcnow() - timedelta(days=7)}
})
}
# Persistent memory stats
stats['persistent_memory'] = {
'total_facts': self.persistent_collection.count_documents({}),
'high_confidence_facts': self.persistent_collection.count_documents({
'confidence': {'$gte': 0.8}
})
}
# Code analysis stats
stats['code_analysis'] = {
'total_analyses': self.analysis_collection.count_documents({}),
'unique_repositories': len(self.analysis_collection.distinct('repo_id'))
}
# Vector database stats (PostgreSQL)
with self.pg_conn.cursor(cursor_factory=RealDictCursor) as cur:
cur.execute("SELECT COUNT(*) as count FROM code_embeddings")
code_embeddings_count = cur.fetchone()['count']
cur.execute("SELECT COUNT(*) as count FROM knowledge_embeddings")
knowledge_embeddings_count = cur.fetchone()['count']
stats['vector_database'] = {
'code_embeddings': code_embeddings_count,
'knowledge_embeddings': knowledge_embeddings_count
}
return stats
except Exception as e:
self.logger.error(f"Stats retrieval failed: {e}")
return {}
class MemoryQueryEngine:
"""Advanced querying capabilities across memory systems."""
def __init__(self, memory_manager: MemoryManager):
self.memory = memory_manager
async def intelligent_query(self, query: str, repo_context: str = "") -> Dict[str, Any]:
"""Intelligent cross-memory querying with relevance scoring."""
try:
# Multi-source memory retrieval
results = await asyncio.gather(
self.memory.retrieve_episodic_memories(query, repo_context, limit=5),
self.memory.retrieve_persistent_memories(query, limit=10),
self.memory.search_similar_code(query, repo_context, limit=5)
)
episodic_memories, persistent_knowledge, similar_code = results
# Relevance scoring and fusion
fused_response = self.fuse_memory_responses(
query, episodic_memories, persistent_knowledge, similar_code
)
return {
'query': query,
'fused_response': fused_response,
'sources': {
'episodic_count': len(episodic_memories),
'persistent_count': len(persistent_knowledge),
'similar_code_count': len(similar_code)
},
'confidence_score': self.calculate_response_confidence(fused_response),
'timestamp': datetime.utcnow()
}
except Exception as e:
self.memory.logger.error(f"Intelligent query failed: {e}")
return {'error': str(e)}
def fuse_memory_responses(self, query: str, episodic: List, persistent: List, code: List) -> str:
"""Fuse responses from different memory systems."""
response_parts = []
# Weight different memory types
if persistent:
high_conf_knowledge = [p for p in persistent if p.get('confidence', 0) > 0.8]
if high_conf_knowledge:
response_parts.append("Based on established knowledge:")
for knowledge in high_conf_knowledge[:3]:
response_parts.append(f"{knowledge['content']}")
if episodic:
recent_interactions = sorted(episodic, key=lambda x: x.get('timestamp', datetime.min), reverse=True)[:2]
if recent_interactions:
response_parts.append("\nFrom previous interactions:")
for interaction in recent_interactions:
response_parts.append(f"{interaction.get('ai_response', '')[:200]}...")
if code:
similar_patterns = [c for c in code if c.get('similarity_score', 0) > 0.7]
if similar_patterns:
response_parts.append("\nSimilar code patterns found:")
for pattern in similar_patterns[:2]:
issues = pattern.get('analysis_data', {}).get('issues_found', [])
if issues:
response_parts.append(f"{pattern['file_path']}: {issues[0]}")
return '\n'.join(response_parts) if response_parts else "No relevant memories found."
def calculate_response_confidence(self, response: str) -> float:
"""Calculate confidence score for fused response."""
if not response or response == "No relevant memories found.":
return 0.0
# Simple confidence calculation based on response length and structure
confidence = min(len(response.split()) / 100.0, 1.0) # Normalize by word count
if "Based on established knowledge:" in response:
confidence += 0.2
if "From previous interactions:" in response:
confidence += 0.1
if "Similar code patterns found:" in response:
confidence += 0.15
return min(confidence, 1.0)
class EnhancedGitHubAnalyzer:
"""Enhanced repository analyzer with memory capabilities and parallel processing."""
def __init__(self, api_key: str, memory_config: Dict[str, Any]):
self.client = anthropic.Anthropic(api_key=api_key)
self.memory_manager = MemoryManager(memory_config)
self.query_engine = MemoryQueryEngine(self.memory_manager)
self.session_id = str(uuid.uuid4())
self.temp_dir = None
# Performance optimization settings
self.max_workers = memory_config.get('max_workers', 10) # Parallel processing
self.batch_size = memory_config.get('batch_size', 10) # OPTIMIZED: Batch processing (REDUCED from 20 to 10)
self.cache_ttl = memory_config.get('cache_ttl', 3600) # Cache TTL
self.max_file_size = memory_config.get('max_file_size', 0) # No file size limit (0 = unlimited)
# Language mapping for file detection
self.language_map = {
'.py': 'Python', '.js': 'JavaScript', '.ts': 'TypeScript',
'.tsx': 'TypeScript', '.jsx': 'JavaScript', '.java': 'Java',
'.cpp': 'C++', '.c': 'C', '.cs': 'C#', '.go': 'Go', '.rs': 'Rust',
'.php': 'PHP', '.rb': 'Ruby', '.swift': 'Swift', '.kt': 'Kotlin',
'.html': 'HTML', '.css': 'CSS', '.scss': 'SCSS', '.sass': 'SASS',
'.sql': 'SQL', '.yaml': 'YAML', '.yml': 'YAML', '.json': 'JSON',
'.xml': 'XML', '.sh': 'Shell', '.dockerfile': 'Docker',
'.md': 'Markdown', '.txt': 'Text'
}
# Code file extensions to analyze
self.code_extensions = set(self.language_map.keys())
async def analyze_files_parallel(self, files_to_analyze: List[Tuple[Path, str]], repo_id: str) -> List[FileAnalysis]:
"""Analyze files in parallel batches for better performance."""
file_analyses = []
# Process files in batches
for i in range(0, len(files_to_analyze), self.batch_size):
batch = files_to_analyze[i:i + self.batch_size]
print(f"Processing batch {i//self.batch_size + 1}/{(len(files_to_analyze) + self.batch_size - 1)//self.batch_size} ({len(batch)} files)")
# Create tasks for parallel execution
tasks = []
for file_path, content in batch:
# Process all files regardless of size (no file size limit)
task = self.analyze_file_with_memory(file_path, content, repo_id)
tasks.append(task)
# Execute batch in parallel
if tasks:
batch_results = await asyncio.gather(*tasks, return_exceptions=True)
# Process results
for j, result in enumerate(batch_results):
if isinstance(result, Exception):
print(f"Error analyzing file {batch[j][0].name}: {result}")
# Create a basic analysis for failed files
failed_analysis = FileAnalysis(
path=str(batch[j][0]),
language=self.detect_language(batch[j][0]),
lines_of_code=len(batch[j][1].splitlines()),
severity_score=5.0,
issues_found=[f"Analysis failed: {str(result)}"],
recommendations=["Review this file manually"]
)
file_analyses.append(failed_analysis)
else:
file_analyses.append(result)
# Small delay between batches to avoid overwhelming the API
await asyncio.sleep(0.5)
return file_analyses
def clone_repository(self, repo_path: str) -> str:
"""Clone repository or use existing path."""
if os.path.exists(repo_path):
print(f"Using existing repository: {repo_path}")
return repo_path
else:
print(f"Cloning repository: {repo_path}")
self.temp_dir = tempfile.mkdtemp(prefix="repo_analysis_")
try:
git.Repo.clone_from(repo_path, self.temp_dir)
return self.temp_dir
except Exception as e:
raise Exception(f"Failed to clone repository: {e}")
def calculate_repo_id(self, repo_path: str) -> str:
"""Generate consistent repository ID."""
return hashlib.sha256(repo_path.encode()).hexdigest()[:16]
def get_file_language(self, file_path: Path) -> str:
"""Get programming language from file extension."""
return self.language_map.get(file_path.suffix.lower(), 'Unknown')
def calculate_complexity_score(self, content: str) -> float:
"""Calculate basic complexity score based on code patterns."""
lines = content.split('\n')
complexity_indicators = ['if', 'else', 'elif', 'for', 'while', 'try', 'except', 'catch', 'switch']
complexity = 1
for line in lines:
line_lower = line.lower().strip()
for indicator in complexity_indicators:
if indicator in line_lower:
complexity += 1
# Normalize to 1-10 scale
return min(complexity / max(len(lines), 1) * 100, 10.0)
async def analyze_file_with_memory(self, file_path: Path, content: str, repo_id: str) -> FileAnalysis:
"""Analyze file with memory-enhanced context."""
language = self.get_file_language(file_path)
lines_of_code = len([line for line in content.split('\n') if line.strip()])
complexity_score = self.calculate_complexity_score(content)
# Skip memory operations for faster analysis
similar_analyses = []
persistent_knowledge = []
# Build enhanced context for analysis
context_info = ""
if similar_analyses:
context_info += f"\nSimilar files previously analyzed:\n"
for similar in similar_analyses[:2]:
context_info += f"- {similar['file_path']}: Found {len(similar.get('analysis_data', {}).get('issues_found', []))} issues\n"
if persistent_knowledge:
context_info += f"\nRelevant best practices:\n"
for knowledge in persistent_knowledge[:3]:
context_info += f"- {knowledge['content'][:100]}...\n"
# Truncate content if too long
if len(content) > 4000:
content = content[:4000] + "\n... [truncated for analysis]"
print(f" Analyzing {file_path.name} ({language}, {lines_of_code} lines)")
# Create comprehensive analysis prompt with memory context
prompt = f"""
You are a senior software engineer with 25+ years of experience. Analyze this {language} code file with context from previous analyses.
FILENAME: {file_path.name}
LANGUAGE: {language}
LINES OF CODE: {lines_of_code}
{context_info}
CODE:
```{language.lower()}
{content}
```
Provide a comprehensive analysis covering:
1. ISSUES FOUND: List at least 5-10 specific problems, bugs, security vulnerabilities, or code smells (be thorough and detailed)
2. RECOMMENDATIONS: Provide at least 5-10 actionable suggestions for improvement
3. CODE QUALITY: Overall assessment of code quality and maintainability
4. SECURITY: Any security concerns or vulnerabilities
5. PERFORMANCE: Potential performance issues or optimizations
6. BEST PRACTICES: Adherence to coding standards and best practices
IMPORTANT: For ISSUES FOUND, please list multiple specific issues (not just 1-3). Be comprehensive.
Rate the overall code quality from 1-10 where 10 is excellent.
ANALYSIS:
"""
try:
message = self.client.messages.create(
model=os.getenv("CLAUDE_MODEL", "claude-3-5-haiku-latest"),
max_tokens=3000,
temperature=0.1,
messages=[{"role": "user", "content": prompt}]
)
analysis_text = message.content[0].text.strip()
# Extract severity score from analysis
severity_match = re.search(r'(\d+(?:\.\d+)?)/10', analysis_text)
severity_score = float(severity_match.group(1)) if severity_match else 5.0
# Parse issues and recommendations from the text
issues = self.extract_issues_from_analysis(analysis_text)
recommendations = self.extract_recommendations_from_analysis(analysis_text)
# Create file analysis object
file_analysis = FileAnalysis(
path=str(file_path.relative_to(Path(self.temp_dir or '.'))),
language=language,
lines_of_code=lines_of_code,
complexity_score=complexity_score,
issues_found=issues,
recommendations=recommendations,
detailed_analysis=analysis_text,
severity_score=severity_score,
content=content # Store actual file content for code examples
)
# Skip memory operations for faster analysis
# await self.memory_manager.store_code_analysis(
# repo_id, str(file_analysis.path), asdict(file_analysis)
# )
# await self.extract_knowledge_from_analysis(file_analysis, repo_id)
return file_analysis
except Exception as e:
print(f" Error analyzing {file_path.name}: {e}")
return FileAnalysis(
path=str(file_path),
language=language,
lines_of_code=lines_of_code,
complexity_score=complexity_score,
issues_found=[f"Analysis failed: {str(e)}"],
recommendations=["Review file manually due to analysis error"],
detailed_analysis=f"Analysis failed due to error: {str(e)}",
severity_score=5.0,
content=content # Store content even on error
)
async def analyze_files_batch(self, combined_prompt: str) -> str:
"""Analyze multiple files in a single API call for smart batching."""
try:
print(f"🚀 [BATCH API] Making single API call for multiple files")
# Make single API call to Claude
message = self.client.messages.create(
model=os.getenv("CLAUDE_MODEL", "claude-3-5-haiku-latest"),
max_tokens=4000, # Increased for multi-file response
temperature=0.1,
messages=[{"role": "user", "content": combined_prompt}]
)
response_text = message.content[0].text.strip()
print(f"✅ [BATCH API] Received response for multiple files")
return response_text
except Exception as e:
print(f"❌ [BATCH API] Error in batch analysis: {e}")
raise e
def extract_issues_from_analysis(self, analysis_text: str) -> List[str]:
"""Extract issues from analysis text."""
issues = []
lines = analysis_text.split('\n')
# Look for common issue indicators
issue_keywords = ['issue', 'problem', 'bug', 'vulnerability', 'error', 'warning', 'concern', 'risk', 'flaw', 'weakness', 'deficiency', 'smell']
# Also check for numbered/bulleted lists
numbered_pattern = re.compile(r'^\d+[\.\)]\s*(.+)')
bullet_pattern = re.compile(r'^[-•*]\s*(.+)')
for line in lines:
line_lower = line.lower().strip()
# Check if line contains issue keywords
if any(keyword in line_lower for keyword in issue_keywords):
if line.strip() and not line.strip().startswith('#'):
# Clean up the line
cleaned_line = line.strip()
# Remove common prefixes if present
cleaned_line = re.sub(r'^(ISSUES? FOUND:|PROBLEMS?:|BUGS?:)\s*', '', cleaned_line, flags=re.IGNORECASE)
if cleaned_line and len(cleaned_line) > 10: # Filter out very short lines
issues.append(cleaned_line)
# Also check for numbered or bulleted lines (these are often issue lists)
numbered_match = numbered_pattern.match(line)
bullet_match = bullet_pattern.match(line)
if numbered_match or bullet_match:
content = (numbered_match or bullet_match).group(1).strip()
if content and len(content) > 10:
# Check if it looks like an issue description
if any(keyword in content.lower() for keyword in issue_keywords):
issues.append(content)
# Remove duplicates while preserving order
seen = set()
unique_issues = []
for issue in issues:
issue_lower = issue.lower()
if issue_lower not in seen:
seen.add(issue_lower)
unique_issues.append(issue)
return unique_issues[:15] # Return up to 15 issues
def extract_recommendations_from_analysis(self, analysis_text: str) -> List[str]:
"""Extract recommendations from analysis text."""
recommendations = []
lines = analysis_text.split('\n')
# Look for recommendation indicators
rec_keywords = ['recommend', 'suggest', 'should', 'consider', 'improve', 'implement', 'add', 'refactor', 'optimize', 'enhance']
# Also check for numbered/bulleted lists
numbered_pattern = re.compile(r'^\d+[\.\)]\s*(.+)')
bullet_pattern = re.compile(r'^[-•*]\s*(.+)')
for line in lines:
line_lower = line.lower().strip()
# Check if line contains recommendation keywords
if any(keyword in line_lower for keyword in rec_keywords):
if line.strip() and not line.strip().startswith('#'):
# Clean up the line
cleaned_line = line.strip()
# Remove common prefixes if present
cleaned_line = re.sub(r'^(RECOMMENDATIONS?:|SUGGESTIONS?:)\s*', '', cleaned_line, flags=re.IGNORECASE)
if cleaned_line and len(cleaned_line) > 10: # Filter out very short lines
recommendations.append(cleaned_line)
# Also check for numbered or bulleted lines
numbered_match = numbered_pattern.match(line)
bullet_match = bullet_pattern.match(line)
if numbered_match or bullet_match:
content = (numbered_match or bullet_match).group(1).strip()
if content and len(content) > 10:
# Check if it looks like a recommendation
if any(keyword in content.lower() for keyword in rec_keywords):
recommendations.append(content)
# Remove duplicates while preserving order
seen = set()
unique_recommendations = []
for rec in recommendations:
rec_lower = rec.lower()
if rec_lower not in seen:
seen.add(rec_lower)
unique_recommendations.append(rec)
return unique_recommendations[:15] # Return up to 15 recommendations
async def extract_knowledge_from_analysis(self, file_analysis: FileAnalysis, repo_id: str):
"""Extract valuable knowledge from analysis for persistent storage."""
try:
# Extract security-related knowledge
security_issues = []
if isinstance(file_analysis.issues_found, (list, tuple)):
security_issues = [issue for issue in file_analysis.issues_found
if any(sec in issue.lower() for sec in ['security', 'vulnerability', 'injection', 'xss', 'auth'])]
for issue in security_issues:
await self.memory_manager.store_persistent_memory(
content=f"Security issue in {file_analysis.language}: {issue}",
category='security_vulnerability',
confidence=0.8,
source_repos=[repo_id]
)
# Extract best practices
best_practices = []
if isinstance(file_analysis.recommendations, (list, tuple)):
best_practices = [rec for rec in file_analysis.recommendations
if any(bp in rec.lower() for bp in ['best practice', 'standard', 'convention'])]
for practice in best_practices:
await self.memory_manager.store_persistent_memory(
content=f"{file_analysis.language} best practice: {practice}",
category='best_practice',
confidence=0.7,
source_repos=[repo_id]
)
# Extract code patterns
if file_analysis.severity_score < 5:
await self.memory_manager.store_persistent_memory(
content=f"Low quality {file_analysis.language} pattern: {file_analysis.detailed_analysis[:200]}",
category='code_pattern',
confidence=0.6,
source_repos=[repo_id]
)
except Exception as e:
self.memory_manager.logger.error(f"Knowledge extraction failed: {e}")
def scan_repository(self, repo_path: str) -> List[Tuple[Path, str]]:
"""Scan repository and collect ALL files for analysis."""
print(f"Scanning repository: {repo_path}")
files_to_analyze = []
# Important files to always include (exclude auto-generated lock files)
important_files = {
'README.md', 'package.json', 'requirements.txt', 'Dockerfile',
'docker-compose.yml', 'tsconfig.json', 'next.config.js',
'tailwind.config.js', 'webpack.config.js', '.env.example',
'Cargo.toml', 'pom.xml', 'build.gradle', 'composer.json',
'Gemfile', 'go.mod'
}
for root, dirs, files in os.walk(repo_path):
# Skip common build/cache directories
dirs[:] = [d for d in dirs if not d.startswith('.') and
d not in {'node_modules', '__pycache__', 'build', 'dist', 'target',
'venv', 'env', '.git', '.next', 'coverage', 'vendor',
'bower_components', '.gradle', '.m2', '.cargo'}]
for file in files:
file_path = Path(root) / file
# Skip auto-generated files that are meaningless for code quality analysis
if file.lower() in ['package-lock.json', 'yarn.lock', 'composer.lock', 'pnpm-lock.yaml']:
continue
# Skip large files (increased limit for comprehensive analysis)
try:
if file_path.stat().st_size > 2000000: # 2MB limit
print(f" Skipping large file: {file_path.name} ({file_path.stat().st_size / 1024 / 1024:.1f}MB)")
continue
except:
continue
# Include important files or files with code extensions
should_include = (
file.lower() in important_files or
file_path.suffix.lower() in self.code_extensions or
file.lower().startswith('dockerfile') or
file.lower().startswith('makefile') or
file.lower().startswith('cmake')
)
if should_include:
try:
with open(file_path, 'r', encoding='utf-8', errors='ignore') as f:
content = f.read()
if content.strip(): # Only non-empty files
files_to_analyze.append((file_path, content))
except Exception as e:
print(f"Could not read {file_path}: {e}")
print(f"Found {len(files_to_analyze)} files to analyze")
return files_to_analyze
async def analyze_repository_with_memory(self, repo_path: str) -> RepositoryAnalysis:
"""Main analysis function with memory integration - analyzes ALL files."""
try:
# Generate repo ID and check for cached analysis
repo_id = self.calculate_repo_id(repo_path)
# Check working memory for recent analysis
cached_analysis = await self.memory_manager.get_working_memory(f"repo_analysis:{repo_id}")
if cached_analysis:
print("Using cached repository analysis from memory")
return RepositoryAnalysis(**cached_analysis)
# Clone/access repository
actual_repo_path = self.clone_repository(repo_path)
# Get analysis context from memory (no user query needed)
context_memories = await self.get_analysis_context(repo_path, "", repo_id)
# Scan ALL files
files_to_analyze = self.scan_repository(actual_repo_path)
if not files_to_analyze:
raise Exception("No files found to analyze")
# Analyze files with parallel processing for better performance
print(f"Starting comprehensive analysis of {len(files_to_analyze)} files with parallel processing...")
file_analyses = await self.analyze_files_parallel(files_to_analyze, repo_id)
# Repository-level analyses with memory context
print("Performing repository-level analysis with memory context...")
architecture_assessment, security_assessment = await self.analyze_repository_overview_with_memory(
actual_repo_path, file_analyses, context_memories, repo_id
)
# Calculate overall quality score safely
if file_analyses and len(file_analyses) > 0:
valid_scores = [fa.severity_score for fa in file_analyses if fa.severity_score is not None]
avg_quality = sum(valid_scores) / len(valid_scores) if valid_scores else 5.0
else:
avg_quality = 5.0
# Generate statistics
languages = dict(Counter(fa.language for fa in file_analyses))
total_lines = sum(fa.lines_of_code for fa in file_analyses)
# Create repository analysis
repo_analysis = RepositoryAnalysis(
repo_path=repo_path,
total_files=len(file_analyses),
total_lines=total_lines,
languages=languages,
architecture_assessment=architecture_assessment,
security_assessment=security_assessment,
code_quality_score=avg_quality,
file_analyses=file_analyses,
executive_summary=""
)
# Generate executive summary with memory context
print("Generating memory-enhanced executive summary...")
repo_analysis.executive_summary = await self.generate_executive_summary_with_memory(
repo_analysis, context_memories
)
# Store analysis in episodic memory (automated analysis)
await self.memory_manager.store_episodic_memory(
self.session_id, "Complete automated repository analysis",
f"Analyzed {repo_analysis.total_files} files, found {sum(len(fa.issues_found) for fa in file_analyses)} issues",
repo_id,
{
'repo_path': repo_path,
'quality_score': avg_quality,
'total_issues': sum(len(fa.issues_found) for fa in file_analyses),
'analysis_type': 'automated_comprehensive'
}
)
# Cache analysis in working memory
await self.memory_manager.store_working_memory(
f"repo_analysis:{repo_id}",
asdict(repo_analysis),
ttl=7200 # 2 hours
)
return repo_analysis
finally:
# Cleanup
if self.temp_dir and os.path.exists(self.temp_dir):
shutil.rmtree(self.temp_dir)
print("Temporary files cleaned up")
async def get_analysis_context(self, repo_path: str, user_query: str, repo_id: str) -> Dict[str, List]:
"""Gather relevant context from memory systems."""
context = {
'episodic_memories': [],
'persistent_knowledge': [],
'similar_analyses': []
}
# Get relevant persistent knowledge for comprehensive analysis
context['persistent_knowledge'] = await self.memory_manager.retrieve_persistent_memories(
"code quality security best practices", limit=15
)
# Find similar code analyses
context['similar_analyses'] = await self.memory_manager.search_similar_code(
"repository analysis", repo_id, limit=10
)
return context
async def analyze_repository_overview_with_memory(self, repo_path: str, file_analyses: List[FileAnalysis],
context_memories: Dict, repo_id: str) -> Tuple[str, str]:
"""Analyze repository architecture and security with memory context."""
print("Analyzing repository overview with memory context...")
# Prepare summary data
languages = dict(Counter(fa.language for fa in file_analyses))
total_lines = sum(fa.lines_of_code for fa in file_analyses)
# Calculate average quality safely
if file_analyses and len(file_analyses) > 0:
valid_scores = [fa.severity_score for fa in file_analyses if fa.severity_score is not None]
avg_quality = sum(valid_scores) / len(valid_scores) if valid_scores else 5.0
else:
avg_quality = 5.0
# Build memory context
memory_context = ""
if context_memories['persistent_knowledge']:
memory_context += "Relevant knowledge from previous analyses:\n"
for knowledge in context_memories['persistent_knowledge'][:3]:
memory_context += f"- {knowledge['content']}\n"
if context_memories['similar_analyses']:
memory_context += "\nSimilar repositories analyzed:\n"
for similar in context_memories['similar_analyses'][:2]:
memory_context += f"- {similar['file_path']}: {len(similar.get('analysis_data', {}).get('issues_found', []))} issues found\n"
# Get repository structure
structure_lines = []
try:
for root, dirs, files in os.walk(repo_path):
dirs[:] = [d for d in dirs if not d.startswith('.') and d not in {'node_modules', '__pycache__'}]
level = root.replace(repo_path, '').count(os.sep)
indent = ' ' * level
structure_lines.append(f"{indent}{os.path.basename(root)}/")
for file in files[:3]: # Limit files shown per directory
structure_lines.append(f"{indent} {file}")
if len(structure_lines) > 50: # Limit total structure size
break
except Exception as e:
structure_lines = [f"Error reading structure: {e}"]
# Architecture analysis with memory context
arch_prompt = f"""
You are a Senior Software Architect with 25+ years of experience analyzing enterprise systems.
{memory_context}
Analyze this repository:
REPOSITORY STRUCTURE:
{chr(10).join(structure_lines[:30])}
STATISTICS:
- Total files analyzed: {len(file_analyses)}
- Total lines of code: {total_lines:,}
- Languages: {languages}
- Average code quality: {avg_quality:.1f}/10
- Large files (>500 lines): {len([fa for fa in file_analyses if fa.lines_of_code > 500])}
- Critical files (score < 4): {len([fa for fa in file_analyses if fa.severity_score < 4])}
TOP FILE ISSUES:
{chr(10).join([f"- {fa.path}: {len(fa.issues_found) if isinstance(fa.issues_found, (list, tuple)) else 0} issues, {fa.lines_of_code} lines, quality: {fa.severity_score:.1f}/10" for fa in file_analyses[:15]])}
Provide a comprehensive architectural assessment following this structure:
**1. PROJECT TYPE AND PURPOSE:**
- What type of application/system is this?
- What is its primary business purpose?
- What technology stack is being used?
**2. TECHNOLOGY STACK EVALUATION:**
- Good technology choices and why they work well
- Problematic technology choices and their issues
- Recommended technology upgrades and migrations
**3. CODE ORGANIZATION AND STRUCTURE:**
- How is the codebase organized?
- Is the folder/file structure logical and maintainable?
- What architectural patterns are being used?
- What's missing in terms of organization?
**4. SCALABILITY AND MAINTAINABILITY CONCERNS:**
- Can this system handle growth and increased load?
- How difficult is it to maintain and extend?
- What are the specific scalability bottlenecks?
- What maintainability issues exist?
**5. KEY ARCHITECTURAL RECOMMENDATIONS:**
- Top 5-10 specific improvements needed
- Priority order for implementing changes
- Estimated effort and impact for each recommendation
Incorporate insights from the memory context provided above.
Keep response under 2000 words and focus on actionable insights with specific examples.
"""
# Security analysis with memory context
security_issues = []
for fa in file_analyses:
if isinstance(fa.issues_found, (list, tuple)):
security_issues.extend([issue for issue in fa.issues_found if
any(keyword in issue.lower() for keyword in
['security', 'vulnerability', 'injection', 'xss', 'auth', 'password'])])
sec_prompt = f"""
You are a Senior Security Engineer with 20+ years of experience in enterprise security.
{memory_context}
Security Analysis for repository with {len(file_analyses)} files:
SECURITY ISSUES FOUND:
{chr(10).join(security_issues[:20]) if security_issues else "No obvious security issues detected"}
HIGH-RISK FILE TYPES PRESENT:
{[lang for lang, count in languages.items() if lang in ['JavaScript', 'TypeScript', 'Python', 'PHP', 'SQL']]}
SECURITY-RELEVANT FILES:
{chr(10).join([f"- {fa.path}: {fa.lines_of_code} lines, issues: {len(fa.issues_found) if isinstance(fa.issues_found, (list, tuple)) else 0}" for fa in file_analyses if any(['auth' in str(fa.path).lower(), 'security' in str(fa.path).lower(), 'login' in str(fa.path).lower(), 'password' in str(fa.path).lower()])][:15])}
Provide a comprehensive security assessment following this structure:
**1. CRITICAL VULNERABILITIES:**
- List all critical security vulnerabilities found
- For each vulnerability, provide:
- Location (file and line numbers)
- Vulnerability type (SQL injection, XSS, CSRF, etc.)
- Evidence of the vulnerability
- Attack scenario and potential impact
- Specific fix recommendations
**2. AUTHENTICATION AND AUTHORIZATION:**
- How is user authentication implemented?
- What authorization mechanisms are in place?
- Are there any authentication bypass vulnerabilities?
- Are session management practices secure?
**3. DATA PROTECTION AND PRIVACY:**
- How is sensitive data handled and stored?
- Are there data encryption mechanisms in place?
- Are there any data exposure vulnerabilities?
- Is input validation properly implemented?
**4. COMMON VULNERABILITY PATTERNS:**
- SQL injection vulnerabilities
- Cross-site scripting (XSS) issues
- Cross-site request forgery (CSRF) vulnerabilities
- Insecure direct object references
- Security misconfigurations
**5. IMMEDIATE SECURITY ACTIONS REQUIRED:**
- Top 5 critical security fixes needed immediately
- Specific steps to remediate each issue
- Security best practices to implement
- Monitoring and detection improvements
Incorporate insights from the memory context provided above.
Keep response under 1500 words and focus on actionable security recommendations with specific code examples where possible.
"""
try:
# Run both analyses
arch_task = self.client.messages.create(
model=os.getenv("CLAUDE_MODEL", "claude-3-5-haiku-latest"),
max_tokens=2500,
temperature=0.1,
messages=[{"role": "user", "content": arch_prompt}]
)
sec_task = self.client.messages.create(
model=os.getenv("CLAUDE_MODEL", "claude-3-5-haiku-latest"),
max_tokens=2000,
temperature=0.1,
messages=[{"role": "user", "content": sec_prompt}]
)
architecture_assessment = arch_task.content[0].text
security_assessment = sec_task.content[0].text
# Store insights as persistent knowledge
await self.memory_manager.store_persistent_memory(
content=f"Architecture pattern: {architecture_assessment[:300]}...",
category='architecture',
confidence=0.7,
source_repos=[repo_id]
)
return architecture_assessment, security_assessment
except Exception as e:
return f"Architecture analysis failed: {e}", f"Security analysis failed: {e}"
async def generate_executive_summary_with_memory(self, analysis: RepositoryAnalysis, context_memories: Dict) -> str:
"""Generate comprehensive executive summary with enhanced business context."""
print("Generating enhanced executive summary with memory context...")
# Build memory context for executive summary
executive_context = ""
if context_memories.get('episodic_memories'):
executive_context += "Previous executive discussions:\n"
for memory in context_memories['episodic_memories'][:2]:
if 'executive' in memory.get('ai_response', '').lower():
executive_context += f"- {memory['ai_response'][:200]}...\n"
# Calculate critical metrics
critical_files = len([fa for fa in analysis.file_analyses if fa.severity_score < 4])
high_priority_files = len([fa for fa in analysis.file_analyses if 4 <= fa.severity_score < 6])
total_issues = sum(len(fa.issues_found) if isinstance(fa.issues_found, (list, tuple)) else 0 for fa in analysis.file_analyses)
large_files = len([fa for fa in analysis.file_analyses if fa.lines_of_code > 500])
security_issues = len([fa for fa in analysis.file_analyses if any('security' in str(issue).lower() for issue in (fa.issues_found if isinstance(fa.issues_found, (list, tuple)) else []))])
prompt = f"""
You are presenting to C-level executives about a critical technical assessment. Create a comprehensive executive summary.
{executive_context}
REPOSITORY METRICS:
- Total Files: {analysis.total_files}
- Lines of Code: {analysis.total_lines:,}
- Languages: {', '.join(list(analysis.languages.keys())[:5]) if analysis.languages else 'Unknown'}
- Code Quality Score: {analysis.code_quality_score:.1f}/10
CRITICAL FINDINGS:
- Total Issues Identified: {total_issues}
- Critical Files (Score < 4): {critical_files}
- High Priority Files (Score 4-6): {high_priority_files}
- Large Monolithic Files (>500 lines): {large_files}
- Security Vulnerabilities: {security_issues}
- High Quality Files (Score 8+): {len([fa for fa in analysis.file_analyses if fa.severity_score >= 8])}
Create a comprehensive executive summary covering:
1. **BUSINESS IMPACT OVERVIEW** (2-3 paragraphs):
- What this application/system does for the business
- How current technical debt is affecting business operations
- Specific business risks and their potential impact
2. **CRITICAL SYSTEM STATISTICS** (bullet points):
- Total issues and their business impact
- Largest problematic files affecting performance
- Security vulnerabilities requiring immediate attention
- Test coverage gaps affecting reliability
3. **KEY BUSINESS RISKS** (3-5 critical risks):
- System reliability and downtime risks
- Development velocity impact on revenue
- Security vulnerabilities and compliance risks
- Scalability limitations affecting growth
- Technical debt costs and competitive disadvantage
4. **FINANCIAL IMPACT ASSESSMENT**:
- Development velocity impact (percentage of time on fixes vs features)
- Technical debt cost estimation
- Infrastructure cost implications
- System capacity limitations
- Maintenance overhead costs
5. **IMMEDIATE ACTIONS REQUIRED** (Next 24-48 hours):
- Critical files requiring immediate fixes
- Security vulnerabilities needing urgent attention
- Process improvements to prevent further degradation
Focus on business outcomes, financial impact, and competitive implications. Use non-technical language that executives can understand and act upon. Keep under 1000 words but be comprehensive.
"""
try:
message = self.client.messages.create(
model=os.getenv("CLAUDE_MODEL", "claude-3-5-haiku-latest"),
max_tokens=1500,
temperature=0.1,
messages=[{"role": "user", "content": prompt}]
)
return message.content[0].text
except Exception as e:
return f"Executive summary generation failed: {e}"
def _create_language_pie_chart(self, languages: Dict[str, int]) -> Drawing:
"""Create a pie chart showing language distribution."""
drawing = Drawing(400, 200)
pie = Pie()
pie.x = 150
pie.y = 50
pie.width = 150
pie.height = 150
# Prepare data
if languages and len(languages) > 0:
labels = list(languages.keys())[:8] # Top 8 languages
values = [languages[lang] for lang in labels]
pie.data = values
pie.labels = labels
# Use distinct colors
chart_colors = [
colors.HexColor('#3b82f6'), # Blue
colors.HexColor('#10b981'), # Green
colors.HexColor('#f59e0b'), # Amber
colors.HexColor('#ef4444'), # Red
colors.HexColor('#8b5cf6'), # Purple
colors.HexColor('#ec4899'), # Pink
colors.HexColor('#06b6d4'), # Cyan
colors.HexColor('#f97316'), # Orange
]
pie.slices.strokeWidth = 1
pie.slices.strokeColor = colors.white
for i, color in enumerate(chart_colors[:len(values)]):
pie.slices[i].fillColor = color
pie.sideLabels = 1
pie.simpleLabels = 0
else:
# Empty state
pie.data = [1]
pie.labels = ['No data']
pie.slices[0].fillColor = colors.HexColor('#e2e8f0')
drawing.add(pie)
return drawing
def _create_quality_bar_chart(self, file_analyses: List) -> Drawing:
"""Create a bar chart showing file quality distribution."""
drawing = Drawing(400, 200)
bc = VerticalBarChart()
bc.x = 50
bc.y = 50
bc.height = 125
bc.width = 300
# Calculate quality counts
high_count = len([fa for fa in file_analyses if fa.severity_score >= 8])
medium_count = len([fa for fa in file_analyses if 5 <= fa.severity_score < 8])
low_count = len([fa for fa in file_analyses if fa.severity_score < 5])
bc.data = [[high_count, medium_count, low_count]]
bc.categoryAxis.categoryNames = ['High', 'Medium', 'Low']
bc.categoryAxis.labels.fontSize = 10
bc.valueAxis.valueMin = 0
bc.valueAxis.valueMax = max(high_count, medium_count, low_count, 1) * 1.2
# Colors
bc.bars[0].fillColor = colors.HexColor('#10b981') # Green for high
bc.bars[1].fillColor = colors.HexColor('#f59e0b') # Amber for medium
bc.bars[2].fillColor = colors.HexColor('#ef4444') # Red for low
drawing.add(bc)
return drawing
def create_pdf_report(self, analysis: RepositoryAnalysis, output_path: str, progress_mgr=None):
"""Generate comprehensive PDF report with enhanced 15-section structure."""
print(f"Generating enhanced PDF report: {output_path}")
# Ensure target directory exists to avoid failures that cause JSON fallback
try:
parent_dir = os.path.dirname(output_path)
if parent_dir:
os.makedirs(parent_dir, exist_ok=True)
except Exception as dir_err:
print(f"⚠️ Could not create reports directory: {dir_err}")
doc = SimpleDocTemplate(output_path, pagesize=A4,
leftMargin=72, rightMargin=72,
topMargin=72, bottomMargin=72)
styles = getSampleStyleSheet()
story = []
# Override all styles to ensure non-italic fonts
styles['Normal'].fontName = 'Helvetica'
styles['Heading1'].fontName = 'Helvetica-Bold'
styles['Heading2'].fontName = 'Helvetica-Bold'
styles['Heading3'].fontName = 'Helvetica-Bold'
styles['Heading4'].fontName = 'Helvetica-Bold'
styles['Heading5'].fontName = 'Helvetica-Bold'
styles['Heading6'].fontName = 'Helvetica-Bold'
styles['Code'].fontName = 'Courier'
# Add missing 'Heading' style
styles.add(ParagraphStyle(
'Heading',
parent=styles['Heading3'],
fontSize=14,
textColor=colors.HexColor('#1e40af'),
spaceBefore=12,
spaceAfter=8,
fontName='Helvetica-Bold' # Explicit non-italic font
))
# Enhanced styles
title_style = ParagraphStyle(
'CustomTitle',
parent=styles['Heading1'],
fontSize=24,
textColor=colors.HexColor('#1e40af'),
spaceAfter=30,
alignment=TA_CENTER,
fontName='Helvetica-Bold' # Explicit non-italic font
)
section_style = ParagraphStyle(
'SectionHeading',
parent=styles['Heading2'],
fontSize=16,
textColor=colors.black, # Black for section headings like reference
spaceBefore=20, # Reduced spacing
spaceAfter=10, # Reduced spacing
borderWidth=0, # No border for cleaner look
leading=20,
fontName='Helvetica-Bold' # Explicit non-italic font
)
heading_style = ParagraphStyle(
'CustomHeading',
parent=styles['Heading2'],
fontSize=14, # Slightly smaller
textColor=colors.black, # Black for subheadings
spaceBefore=15, # Reduced spacing
spaceAfter=8, # Reduced spacing
fontName='Helvetica-Bold' # Explicit non-italic font
)
subheading_style = ParagraphStyle(
'SubHeading',
parent=styles['Heading3'],
fontSize=12, # Standard subheading size
textColor=colors.black, # Black for consistency
spaceBefore=12, # Reduced spacing
spaceAfter=6, # Reduced spacing
fontName='Helvetica-Bold' # Explicit non-italic font
)
# Code style with minimal spacing to prevent unwanted gaps
code_style = ParagraphStyle(
'CodeStyle',
parent=styles['Code'],
fontSize=8,
fontName='Courier', # Courier is already a non-italic monospace font
leftIndent=20,
rightIndent=20,
spaceBefore=5, # Reduced from 10 to minimize gaps
spaceAfter=5, # Reduced from 10 to minimize gaps
backColor=colors.HexColor('#f3f4f6'),
borderWidth=1,
borderColor=colors.HexColor('#d1d5db'),
borderPadding=6,
leading=11 # Reduced line height for code blocks
)
# Ensure Normal style is not italic
styles.add(ParagraphStyle(
'NormalExplicit',
parent=styles['Normal'],
fontName='Helvetica' # Explicit non-italic normal font
))
# Calculate statistics
total_files = analysis.total_files if isinstance(analysis.total_files, int) and analysis.total_files > 0 else 1
high_quality_count = len([fa for fa in analysis.file_analyses if fa.severity_score >= 8])
medium_quality_count = len([fa for fa in analysis.file_analyses if 5 <= fa.severity_score < 8])
low_quality_count = len([fa for fa in analysis.file_analyses if fa.severity_score < 5])
critical_files = len([fa for fa in analysis.file_analyses if fa.severity_score < 4])
total_issues = sum(len(fa.issues_found) if isinstance(fa.issues_found, (list, tuple)) else 0 for fa in analysis.file_analyses)
# SECTION 1: TITLE PAGE
story.append(Paragraph("COMPREHENSIVE AI REPOSITORY ANALYSIS REPORT", title_style))
story.append(Spacer(1, 30))
story.append(Paragraph(f"<b>Repository:</b> {analysis.repo_path}", styles['Normal']))
story.append(Paragraph(f"<b>Analysis Date:</b> {datetime.now().strftime('%B %d, %Y at %H:%M')}", styles['Normal']))
story.append(Paragraph("<b>Generated by:</b> Enhanced AI Analysis System with Memory", styles['Normal']))
story.append(Paragraph("<b>Report Type:</b> Comprehensive Technical Assessment", styles['Normal']))
story.append(PageBreak())
# SECTION 2: EXECUTIVE SUMMARY
story.append(Paragraph("EXECUTIVE SUMMARY", section_style))
# Use AI-generated executive summary if available
if hasattr(analysis, 'executive_summary') and analysis.executive_summary:
# Parse the AI-generated summary and format it
summary_text = analysis.executive_summary
# Split into paragraphs if needed
paragraphs = summary_text.split('\n\n')
for para in paragraphs:
if para.strip():
story.append(Paragraph(para.strip(), styles['Normal']))
story.append(Spacer(1, 12))
else:
# Fallback if no AI summary (should not happen)
story.append(Paragraph("AI-generated executive summary not available. Generating analysis...", styles['Normal']))
story.append(Spacer(1, 12))
# Detect technology stack for technology-aware analysis
tech_stack = self._detect_technology_stack(analysis)
is_csharp = tech_stack['is_csharp']
is_nodejs = tech_stack['is_nodejs']
is_java = tech_stack['is_java']
is_python = tech_stack['is_python']
database_type = tech_stack['database_type']
orm_name = tech_stack['orm_name']
# Add Full Project Details Section
story.append(Paragraph("Full Project Details", subheading_style))
# Technology Stack Details
story.append(Paragraph("<b>Technology Stack:</b>", styles['Heading3']))
tech_details = f"""
• <b>Primary Languages:</b> {', '.join(analysis.languages.keys()) if analysis.languages else 'Unknown'}<br/>
• <b>Backend Framework:</b> {tech_stack.get('framework', 'Unknown')}<br/>
• <b>Database:</b> {database_type or 'Unknown'}<br/>
• <b>ORM:</b> {orm_name or 'None detected'}<br/>
• <b>Total Files:</b> {analysis.total_files:,}<br/>
• <b>Total Lines of Code:</b> {analysis.total_lines:,}<br/>
"""
story.append(Paragraph(tech_details, styles['Normal']))
story.append(Spacer(1, 12))
# Architecture Patterns
story.append(Paragraph("<b>Architecture Patterns:</b>", styles['Heading3']))
backend_patterns = self._analyze_backend_patterns(analysis)
controller_analysis = self._analyze_controller_layer(analysis)
arch_patterns = f"""
• <b>Service Layer:</b> {backend_patterns['service_layer']['pattern']} ({backend_patterns['service_layer']['service_files']} files)<br/>
• <b>Repository Layer:</b> {backend_patterns['repository_layer']['pattern']} ({backend_patterns['repository_layer']['repository_files']} files)<br/>
• <b>Data Layer:</b> {backend_patterns['data_layer']['pattern']}<br/>
• <b>API Controllers:</b> {controller_analysis['controller_count']} controllers, {controller_analysis['total_endpoints']}+ endpoints<br/>
"""
story.append(Paragraph(arch_patterns, styles['Normal']))
story.append(Spacer(1, 12))
# Key Code Structure
story.append(Paragraph("<b>Code Structure:</b>", styles['Heading3']))
large_files = [fa for fa in analysis.file_analyses if fa.lines_of_code > 500]
very_large_files = [fa for fa in analysis.file_analyses if fa.lines_of_code > 1000]
backend_monoliths = [fa for fa in analysis.file_analyses if any(ext in str(fa.path).lower() for ext in ['.cs', '.java', '.py', '.js', '.go', '.rs', '.rb', '.php', '.swift', '.kt']) and fa.lines_of_code > 10000]
frontend_monoliths = [fa for fa in analysis.file_analyses if any(ext in str(fa.path).lower() for ext in ['.jsx', '.tsx', '.js', '.ts', '.vue', '.svelte']) and fa.lines_of_code > 10000]
code_structure = f"""
• <b>Average File Size:</b> {analysis.total_lines / analysis.total_files:.0f} lines per file<br/>
• <b>Large Files (>500 lines):</b> {len(large_files)} files<br/>
• <b>Very Large Files (>1000 lines):</b> {len(very_large_files)} files<br/>
• <b>Backend Monoliths (>10K lines):</b> {len(backend_monoliths)} files<br/>
• <b>Frontend Monoliths (>10K lines):</b> {len(frontend_monoliths)} files<br/>
"""
story.append(Paragraph(code_structure, styles['Normal']))
story.append(Spacer(1, 12))
# Key Findings
story.append(Paragraph("<b>Key Findings:</b>", styles['Heading3']))
total_issues = sum(len(fa.issues_found) if isinstance(fa.issues_found, (list, tuple)) else 0 for fa in analysis.file_analyses)
critical_files = [fa for fa in analysis.file_analyses if fa.severity_score < 4]
high_priority_files = [fa for fa in analysis.file_analyses if 4 <= fa.severity_score < 6]
security_vulnerable_files = len([fa for fa in analysis.file_analyses if (isinstance(fa.issues_found, (list, tuple)) and any(issue in str(fa.issues_found).lower() for issue in ['security', 'vulnerability', 'injection', 'xss', 'csrf', 'authentication']))])
test_files = [fa for fa in analysis.file_analyses if 'test' in str(fa.path).lower() or 'spec' in str(fa.path).lower()]
test_coverage_estimate = min((len(test_files) / (analysis.total_files - len(test_files)) * 100) if (analysis.total_files - len(test_files)) > 0 else 0, 99)
key_findings = f"""
• <b>Overall Code Quality Score:</b> {analysis.code_quality_score:.1f}/10<br/>
• <b>Total Issues Identified:</b> {total_issues}+<br/>
• <b>Critical Files (Score < 4):</b> {len(critical_files)} files require immediate attention<br/>
• <b>High Priority Files (Score 4-6):</b> {len(high_priority_files)} files need improvement<br/>
• <b>Security Vulnerabilities:</b> {security_vulnerable_files} files with security concerns<br/>
• <b>Test Coverage:</b> {test_coverage_estimate:.1f}% (estimated)<br/>
"""
story.append(Paragraph(key_findings, styles['Normal']))
story.append(Spacer(1, 12))
# Sample Code Files
story.append(Paragraph("<b>Sample Key Files:</b>", styles['Heading3']))
sample_files = []
# Get largest controller
controller_files = [fa for fa in analysis.file_analyses if 'controller' in str(fa.path).lower() or 'api' in str(fa.path).lower()]
if controller_files:
largest_controller = max(controller_files, key=lambda x: x.lines_of_code)
sample_files.append(f"Largest Controller: {largest_controller.path} ({largest_controller.lines_of_code} lines)")
# Get largest service
service_files = [fa for fa in analysis.file_analyses if any(indicator in str(fa.path).lower() for indicator in ['service', 'business', 'logic', 'manager'])]
if service_files:
largest_service = max(service_files, key=lambda x: x.lines_of_code)
sample_files.append(f"Largest Service: {largest_service.path} ({largest_service.lines_of_code} lines)")
# Get largest frontend file
frontend_files = [fa for fa in analysis.file_analyses if any(ext in str(fa.path).lower() for ext in ['.js', '.jsx', '.ts', '.tsx', '.vue', '.html'])]
if frontend_files:
largest_frontend = max(frontend_files, key=lambda x: x.lines_of_code)
sample_files.append(f"Largest Frontend: {largest_frontend.path} ({largest_frontend.lines_of_code} lines)")
if sample_files:
sample_text = '<br/>'.join([f"{sf}" for sf in sample_files[:5]])
story.append(Paragraph(sample_text, styles['Normal']))
story.append(Spacer(1, 12))
# Calculate metrics for detailed sections below
# Find test files
test_files = [fa for fa in analysis.file_analyses if 'test' in str(fa.path).lower() or 'spec' in str(fa.path).lower()]
total_test_files = len(test_files)
total_code_files = total_files - total_test_files if total_files > total_test_files else total_files
test_coverage_estimate = min((total_test_files / total_code_files * 100) if total_code_files > 0 else 0, 99)
# Calculate technology-specific connection pool defaults
if is_csharp:
default_pool_size = 100 # SQL Server default
pool_type = "SQL Server"
elif is_nodejs:
if database_type == 'MongoDB':
default_pool_size = 5 # MongoDB default
pool_type = "MongoDB"
else:
default_pool_size = 20 # PostgreSQL/MySQL typical
pool_type = "SQL Database"
elif is_java:
default_pool_size = 100 # HikariCP default
pool_type = "HikariCP"
elif is_python:
default_pool_size = 20 # SQLAlchemy typical
pool_type = "SQL Database"
else:
default_pool_size = 100 # Generic default
pool_type = "Database"
# Calculate performance metrics needed for detailed sections
avg_dependencies = sum(len(fa.issues_found) if isinstance(fa.issues_found, list) else 0 for fa in analysis.file_analyses) / total_files if total_files > 0 else 5
repository_instances_per_request = min(int(avg_dependencies * 2.5), 50)
db_connections_per_request = repository_instances_per_request
# Ensure max_concurrent_requests is at least 1 to avoid division by zero errors
if db_connections_per_request > 0:
max_concurrent_requests = max(1, default_pool_size // db_connections_per_request)
else:
max_concurrent_requests = 1
# Calculate processing time metrics
avg_file_size = sum(fa.lines_of_code for fa in analysis.file_analyses) / total_files if total_files > 0 else 100
processing_time_per_file = avg_file_size * 0.002 # More realistic processing time
# Calculate these metrics early for use in multiple sections
critical_count = len([fa for fa in analysis.file_analyses if fa.severity_score < 4])
high_priority_count = len([fa for fa in analysis.file_analyses if 4 <= fa.severity_score < 6])
total_issues = sum(len(fa.issues_found) if isinstance(fa.issues_found, (list, tuple)) else 0 for fa in analysis.file_analyses)
total_processing_time = processing_time_per_file * total_files
# Calculate memory per request (for later sections if needed)
memory_per_request_gb = (repository_instances_per_request * 0.001) / 1000 # Simplified calculation
# Add detailed metrics as separate section after AI summary
story.append(Paragraph("Detailed Analysis Metrics", subheading_style))
# Critical System Statistics
story.append(Paragraph("Critical System Statistics", subheading_style))
# Calculate backend monoliths (all common backend extensions)
backend_monoliths = [fa for fa in analysis.file_analyses if any(ext in str(fa.path).lower() for ext in ['.cs', '.java', '.py', '.js', '.go', '.rs', '.rb', '.php', '.swift', '.kt']) and fa.lines_of_code > 10000]
backend_monolith_total = sum([fa.lines_of_code for fa in backend_monoliths])
# Calculate frontend monoliths
frontend_monoliths = [fa for fa in analysis.file_analyses if any(ext in str(fa.path).lower() for ext in ['.jsx', '.tsx', '.js', '.ts', '.vue', '.svelte']) and fa.lines_of_code > 10000]
frontend_monolith_total = sum([fa.lines_of_code for fa in frontend_monoliths])
# Calculate security vulnerabilities count
security_vulnerable_files = len([fa for fa in analysis.file_analyses if (isinstance(fa.issues_found, (list, tuple)) and any(issue in str(fa.issues_found).lower() for issue in ['security', 'vulnerability', 'injection', 'xss', 'csrf', 'authentication']))])
stats_bullets = [
f"<b>Total Issues Identified:</b> {total_issues}+",
f"<b>Backend Monoliths:</b> {len(backend_monoliths)} files with {backend_monolith_total:,} total lines",
f"<b>Frontend Monoliths:</b> {len(frontend_monoliths)} files with {frontend_monolith_total:,} total lines",
f"<b>Security Vulnerabilities:</b> {security_vulnerable_files} files with security concerns",
f"<b>Test Coverage:</b> {test_coverage_estimate:.1f}%"
]
for bullet in stats_bullets:
story.append(Paragraph(bullet, styles['Normal'], bulletText=''))
story.append(Spacer(1, 12))
# All risk assessments and actions are now in AI-generated executive summary
# Calculate large files for later sections
large_files = [fa for fa in analysis.file_analyses if fa.lines_of_code > 500]
very_large_files = [fa for fa in analysis.file_analyses if fa.lines_of_code > 1000]
story.append(PageBreak())
# SECTION 3: BACKEND ARCHITECTURE ANALYSIS - COMPLETE ASSESSMENT
story.append(Paragraph("BACKEND ARCHITECTURE ANALYSIS - COMPLETE ASSESSMENT", section_style))
# Use AI-generated architecture assessment if available
if hasattr(analysis, 'architecture_assessment') and analysis.architecture_assessment:
# Parse and format the AI-generated assessment
arch_text = analysis.architecture_assessment
# Split into paragraphs if needed
paragraphs = arch_text.split('\n\n')
for para in paragraphs:
if para.strip():
# Check if it's a header (starts with ** or #)
if para.strip().startswith('**') and para.strip().endswith('**'):
story.append(Paragraph(f"<b>{para.strip().replace('**', '')}</b>", subheading_style))
else:
story.append(Paragraph(para.strip(), styles['Normal']))
story.append(Spacer(1, 20))
else:
# Fallback: simple message
story.append(Paragraph("Architecture assessment in progress...", styles['Normal']))
story.append(Spacer(1, 20))
# AI-generated architecture assessment already contains all layer analysis
story.append(PageBreak())
# SECTION 4: FRONTEND ARCHITECTURE ANALYSIS
# Analyze frontend patterns
frontend_analysis = self._analyze_frontend_architecture(analysis)
# Only show frontend analysis if frontend files exist
if frontend_analysis.get('has_frontend', False):
story.append(Paragraph("FRONTEND ARCHITECTURE ANALYSIS - COMPREHENSIVE BUSINESS ASSESSMENT", section_style))
# 1. Framework and Technology Overview
story.append(Paragraph("1. Framework and Technology Overview", subheading_style))
framework_info = frontend_analysis.get('framework_info', {})
story.append(Paragraph(f"<b>Detected Framework:</b> {framework_info.get('detected_framework', 'Unknown')}", styles['Normal']))
story.append(Paragraph(f"<b>Business Impact:</b> {framework_info.get('business_summary', 'Framework analysis not available')}", styles['Normal']))
if framework_info.get('ai_analysis'):
story.append(Paragraph("<b>Technical Assessment:</b>", styles['Normal']))
story.append(Paragraph(self._format_ai_analysis_for_pdf(framework_info['ai_analysis']), styles['Normal']))
story.append(Spacer(1, 15))
# 2. Component Structure and Hierarchy
story.append(Paragraph("2. Component Structure and Hierarchy", subheading_style))
component_analysis = frontend_analysis.get('component_analysis', {})
story.append(Paragraph(f"<b>Total Components:</b> {component_analysis.get('component_count', 0)} components", styles['Normal']))
story.append(Paragraph(f"<b>Business Overview:</b> {component_analysis.get('business_summary', 'Component analysis not available')}", styles['Normal']))
if component_analysis.get('hierarchy_description'):
story.append(Paragraph("<b>Component Hierarchy:</b>", styles['Normal']))
story.append(Paragraph(self._format_hierarchy_for_pdf(component_analysis['hierarchy_description']), styles['Normal']))
if component_analysis.get('ai_analysis'):
story.append(Paragraph("<b>Detailed Component Analysis:</b>", styles['Normal']))
story.append(Paragraph(self._format_ai_analysis_for_pdf(component_analysis['ai_analysis']), styles['Normal']))
story.append(Spacer(1, 15))
# 3. User Navigation and Journey Flow
story.append(Paragraph("3. User Navigation and Journey Flow", subheading_style))
navigation_analysis = frontend_analysis.get('navigation_analysis', {})
story.append(Paragraph(f"<b>Navigation Files:</b> {navigation_analysis.get('routing_files_count', 0)} routing/navigation files", styles['Normal']))
story.append(Paragraph(f"<b>Business Impact:</b> {navigation_analysis.get('business_summary', 'Navigation analysis not available')}", styles['Normal']))
if navigation_analysis.get('user_journey_map'):
story.append(Paragraph("<b>User Journey Map:</b>", styles['Normal']))
story.append(Paragraph(self._format_user_journey_for_pdf(navigation_analysis['user_journey_map']), styles['Normal']))
if navigation_analysis.get('ai_analysis'):
story.append(Paragraph("<b>Navigation Flow Analysis:</b>", styles['Normal']))
story.append(Paragraph(self._format_ai_analysis_for_pdf(navigation_analysis['ai_analysis']), styles['Normal']))
story.append(Spacer(1, 15))
# 4. Business Functionality Analysis
story.append(Paragraph("4. Business Functionality Analysis", subheading_style))
business_analysis = frontend_analysis.get('business_analysis', {})
story.append(Paragraph(f"<b>Business Files:</b> {business_analysis.get('business_files_count', 0)} business logic files", styles['Normal']))
story.append(Paragraph(f"<b>Forms:</b> {business_analysis.get('forms_count', 0)} form handling files", styles['Normal']))
story.append(Paragraph(f"<b>Services:</b> {business_analysis.get('service_files_count', 0)} service files", styles['Normal']))
story.append(Paragraph(f"<b>Business Value:</b> {business_analysis.get('business_summary', 'Business functionality analysis not available')}", styles['Normal']))
if business_analysis.get('ai_analysis'):
story.append(Paragraph("<b>Business Functionality Assessment:</b>", styles['Normal']))
story.append(Paragraph(self._format_ai_analysis_for_pdf(business_analysis['ai_analysis']), styles['Normal']))
story.append(Spacer(1, 15))
# 5. Data Flow and State Management
story.append(Paragraph("5. Data Flow and State Management", subheading_style))
data_flow_analysis = frontend_analysis.get('data_flow_analysis', {})
story.append(Paragraph(f"<b>Data Management Files:</b> {data_flow_analysis.get('data_files_count', 0)} state/data files", styles['Normal']))
story.append(Paragraph(f"<b>Business Impact:</b> {data_flow_analysis.get('business_summary', 'Data flow analysis not available')}", styles['Normal']))
if data_flow_analysis.get('ai_analysis'):
story.append(Paragraph("<b>Data Flow Analysis:</b>", styles['Normal']))
story.append(Paragraph(self._format_ai_analysis_for_pdf(data_flow_analysis['ai_analysis']), styles['Normal']))
story.append(Spacer(1, 15))
# 6. User Interface and Experience Patterns
story.append(Paragraph("6. User Interface and Experience Patterns", subheading_style))
ui_pattern_analysis = frontend_analysis.get('ui_pattern_analysis', {})
story.append(Paragraph(f"<b>UI/Design Files:</b> {ui_pattern_analysis.get('ui_files_count', 0)} UI component files", styles['Normal']))
story.append(Paragraph(f"<b>User Experience Impact:</b> {ui_pattern_analysis.get('business_summary', 'UI pattern analysis not available')}", styles['Normal']))
if ui_pattern_analysis.get('ai_analysis'):
story.append(Paragraph("<b>UI/UX Pattern Analysis:</b>", styles['Normal']))
story.append(Paragraph(self._format_ai_analysis_for_pdf(ui_pattern_analysis['ai_analysis']), styles['Normal']))
story.append(Spacer(1, 15))
# 7. API Integration and Backend Communication
story.append(Paragraph("7. API Integration and Backend Communication", subheading_style))
api_analysis = frontend_analysis.get('api_analysis', {})
story.append(Paragraph(f"<b>API Integration Files:</b> {api_analysis.get('api_files_count', 0)} API/service files", styles['Normal']))
story.append(Paragraph(f"<b>Integration Impact:</b> {api_analysis.get('business_summary', 'API integration analysis not available')}", styles['Normal']))
if api_analysis.get('ai_analysis'):
story.append(Paragraph("<b>API Integration Analysis:</b>", styles['Normal']))
story.append(Paragraph(self._format_ai_analysis_for_pdf(api_analysis['ai_analysis']), styles['Normal']))
story.append(Spacer(1, 15))
# 8. Performance and Security Assessment
story.append(Paragraph("8. Performance and Security Assessment", subheading_style))
performance_analysis = frontend_analysis.get('performance_analysis', {})
story.append(Paragraph(f"<b>Total Frontend Code:</b> {performance_analysis.get('total_lines', 0):,} lines", styles['Normal']))
story.append(Paragraph(f"<b>Estimated Bundle Size:</b> {performance_analysis.get('bundle_size', 'Unknown')}", styles['Normal']))
story.append(Paragraph(f"<b>Performance Score:</b> {performance_analysis.get('performance_score', 'Unknown')}/100", styles['Normal']))
story.append(Paragraph(f"<b>Estimated Load Time:</b> {performance_analysis.get('estimated_load_time', 'Unknown')} seconds", styles['Normal']))
story.append(Paragraph(f"<b>Business Impact:</b> {performance_analysis.get('business_summary', 'Performance analysis not available')}", styles['Normal']))
if performance_analysis.get('ai_analysis'):
story.append(Paragraph("<b>Performance and Security Analysis:</b>", styles['Normal']))
story.append(Paragraph(self._format_ai_analysis_for_pdf(performance_analysis['ai_analysis']), styles['Normal']))
story.append(Spacer(1, 20))
else:
story.append(Paragraph("FRONTEND ARCHITECTURE ANALYSIS - NOT APPLICABLE", section_style))
story.append(Paragraph("No frontend files detected in this repository. This analysis section is not applicable for this codebase.", styles['Normal']))
story.append(Spacer(1, 20))
story.append(PageBreak())
# SECTION 5: TESTING INFRASTRUCTURE ANALYSIS
story.append(Paragraph("TESTING INFRASTRUCTURE COMPREHENSIVE ANALYSIS", section_style))
story.append(Paragraph("1. Backend Testing Analysis", subheading_style))
# Analyze testing infrastructure
testing_analysis = self._analyze_testing_infrastructure(analysis)
# 1.1 Backend Test Coverage Analysis
story.append(Paragraph("1.1 Backend Test Coverage Analysis", subheading_style))
# Calculate actual backend test file count (all common backend languages)
backend_test_files = [fa for fa in analysis.file_analyses if 'test' in str(fa.path).lower() and any(ext in str(fa.path).lower() for ext in ['.cs', '.java', '.py', '.go', '.rs', '.rb', '.php', '.swift', '.kt'])]
backend_code_files = [fa for fa in analysis.file_analyses if any(ext in str(fa.path).lower() for ext in ['.cs', '.java', '.py', '.go', '.rs', '.rb', '.php', '.swift', '.kt']) and 'test' not in str(fa.path).lower()]
story.append(Paragraph(f"<b>Total Backend Files:</b> {len(backend_code_files)}+ (services, controllers, repositories)", styles['Normal']))
story.append(Paragraph(f"<b>Test Files:</b> {len(backend_test_files)} total test files", styles['Normal']))
story.append(Paragraph(f"<b>Testing Coverage:</b> <1%", styles['Normal']))
story.append(Spacer(1, 15))
# Backend Testing Statistics
story.append(Paragraph("Backend Testing Statistics:", subheading_style))
story.append(Paragraph("Backend Testing Coverage Analysis:", subheading_style))
# Calculate specific test types
controller_test_count = len([fa for fa in backend_test_files if 'controller' in str(fa.path).lower()])
service_test_count = len([fa for fa in backend_test_files if 'service' in str(fa.path).lower()])
repository_test_count = len([fa for fa in backend_test_files if 'repository' in str(fa.path).lower()])
story.append(Paragraph(f"• <b>Controllers ({len([fa for fa in backend_code_files if 'controller' in str(fa.path).lower()])} files):</b> {controller_test_count} controller tests", styles['Normal']))
story.append(Paragraph(f"• <b>Services (20+ files):</b> {service_test_count} service test files", styles['Normal']))
story.append(Paragraph(f"• <b>Repositories ({len([fa for fa in backend_code_files if 'repository' in str(fa.path).lower()])} files):</b> {repository_test_count} repository tests", styles['Normal']))
story.append(Paragraph("• <b>API Endpoints (500+ endpoints):</b> 0 endpoint tests", styles['Normal']))
story.append(Spacer(1, 10))
# 2. Frontend Testing Analysis
story.append(Paragraph("2. Frontend Testing Analysis", subheading_style))
# Calculate actual frontend test file count
frontend_test_files = [fa for fa in analysis.file_analyses if 'test' in str(fa.path).lower() and any(ext in str(fa.path).lower() for ext in ['.js', '.jsx', '.ts', '.tsx'])]
frontend_code_files = [fa for fa in analysis.file_analyses if any(ext in str(fa.path).lower() for ext in ['.js', '.jsx', '.ts', '.tsx']) and 'test' not in str(fa.path).lower()]
# Count empty test files
empty_test_files = len([fa for fa in frontend_test_files if fa.lines_of_code == 0])
story.append(Paragraph(f"<b>Total JavaScript Files:</b> {len(frontend_code_files)} files", styles['Normal']))
story.append(Paragraph(f"<b>Test Files:</b> {len(frontend_test_files)} (completely empty: {empty_test_files})", styles['Normal']))
story.append(Paragraph(f"<b>Test Coverage:</b> 0%", styles['Normal']))
story.append(Spacer(1, 10))
# Frontend Testing Statistics (removed duplicate)
story.append(Spacer(1, 10))
# Integration Testing Analysis
story.append(Paragraph("Integration Testing Analysis:", subheading_style))
story.append(Paragraph(f"• <b>Integration Tests:</b> {testing_analysis['integration_tests']}", styles['Normal']))
story.append(Paragraph(f"• <b>API Tests:</b> {testing_analysis['api_tests']}", styles['Normal']))
story.append(Paragraph(f"• <b>Database Tests:</b> {testing_analysis['database_tests']}", styles['Normal']))
story.append(Paragraph(f"• <b>End-to-End Tests:</b> {testing_analysis['e2e_tests']}", styles['Normal']))
story.append(Spacer(1, 10))
# Security Testing Analysis
story.append(Paragraph("Security Testing Analysis:", subheading_style))
story.append(Paragraph(f"• <b>Security Tests:</b> {testing_analysis['security_tests']}", styles['Normal']))
story.append(Paragraph(f"• <b>Vulnerability Scans:</b> {testing_analysis['vulnerability_scans']}", styles['Normal']))
story.append(Paragraph(f"• <b>Penetration Tests:</b> {testing_analysis['penetration_tests']}", styles['Normal']))
story.append(Paragraph(f"• <b>Authentication Tests:</b> {testing_analysis['auth_tests']}", styles['Normal']))
story.append(Spacer(1, 10))
# Performance Testing Analysis
story.append(Paragraph("Performance Testing Analysis:", subheading_style))
story.append(Paragraph(f"• <b>Performance Tests:</b> {testing_analysis['performance_tests']}", styles['Normal']))
story.append(Paragraph(f"• <b>Load Tests:</b> {testing_analysis['load_tests']}", styles['Normal']))
story.append(Paragraph(f"• <b>Stress Tests:</b> {testing_analysis['stress_tests']}", styles['Normal']))
story.append(Paragraph(f"• <b>Benchmark Tests:</b> {testing_analysis['benchmark_tests']}", styles['Normal']))
story.append(Spacer(1, 15))
# Testing Quality Assessment
story.append(Paragraph("Testing Quality Assessment:", subheading_style))
story.append(Paragraph(f"• <b>Overall Test Coverage:</b> {testing_analysis['overall_coverage']}%", styles['Normal']))
story.append(Paragraph(f"• <b>Test Quality Score:</b> {testing_analysis['test_quality_score']}/100", styles['Normal']))
story.append(Paragraph(f"• <b>Critical Issues:</b> {testing_analysis['critical_issues']}", styles['Normal']))
story.append(Paragraph(f"• <b>Recommendations:</b> {testing_analysis['recommendations']}", styles['Normal']))
story.append(Spacer(1, 15))
story.append(Spacer(1, 20))
story.append(PageBreak())
# SECTION 6: DETAILED CODE ANALYSIS BY LAYER
story.append(Paragraph("SECTION 6: DETAILED CODE ANALYSIS BY LAYER", section_style))
code_style = ParagraphStyle(
'CodeExample',
parent=styles['Code'],
fontSize=8,
fontName='Courier',
leftIndent=20,
rightIndent=20,
spaceBefore=10,
spaceAfter=10,
backColor=colors.HexColor('#f8f9fa'),
borderWidth=1,
borderColor=colors.HexColor('#dee2e6'),
borderPadding=8
)
# Safe defaults for configuration metrics used in examples
try:
config_lines = int(max(avg_file_size * 0.3, 0))
entity_configs = int(config_lines * 0.2)
relationship_configs = int(config_lines * 0.15)
optional_relationships = int(relationship_configs * 0.96)
required_relationships = max(relationship_configs - optional_relationships, 0)
collection_conflicts = int(relationship_configs * 0.16)
except Exception:
config_lines = entity_configs = relationship_configs = optional_relationships = required_relationships = collection_conflicts = 0
code_example = f"""
// {config_lines:.0f} LINES of MANUAL CONFIGURATION
// {entity_configs} entity configurations manually specified
// {relationship_configs} relationship configurations manually mapped
// {optional_relationships} optional relationships ({optional_relationships/relationship_configs*100:.1f}% data integrity failure)
// {collection_conflicts} collection name conflicts causing mapping chaos
public class AppIdentityDbContext : IdentityDbContext {{
protected override void OnModelCreating(ModelBuilder modelBuilder) {{
// REPETITIVE DISASTER PATTERN:
modelBuilder.Entity<Costing>()
.HasOptional(pk => pk.WorkingPart)
.WithMany(cl => cl.BaseCostings)
.HasForeignKey(fk => fk.WorkingPartIdRef);
// REPEATED {relationship_configs} TIMES WITH VARIATIONS!
}}
}}
"""
story.append(Preformatted(code_example, code_style))
story.append(Spacer(1, 12))
# Configuration Disaster Statistics
story.append(Paragraph("Configuration Disaster Statistics:", subheading_style))
config_stats = f"""
• <b>Total Lines:</b> {config_lines:.0f} (EXTREME MONOLITH)
• <b>Entity Configurations:</b> {entity_configs} manually specified
• <b>Relationship Configurations:</b> {relationship_configs} manually mapped
• <b>Optional Relationships:</b> {optional_relationships} ({optional_relationships/relationship_configs*100:.1f}% of all relationships)
• <b>Required Relationships:</b> Only {required_relationships} ({required_relationships/relationship_configs*100:.1f}% - data integrity disaster)
• <b>Collection Name Conflicts:</b> {collection_conflicts} (navigation property chaos)
• <b>Repetitive Patterns:</b> Same entity configured multiple times
• <b>Maintenance:</b> IMPOSSIBLE for development team
"""
story.append(Paragraph(config_stats, styles['Normal']))
story.append(Spacer(1, 20))
# 1.2 Repository Factory Pattern Disaster
story.append(Paragraph("1.2 Repository Factory Pattern Disaster", subheading_style))
story.append(Paragraph("<b>Critical Finding:</b> Every repository creates separate DbContext instance.", styles['Normal']))
story.append(Spacer(1, 12))
# Repository pattern code example
repo_code = f"""
// SMOKING GUN: Base Repository Implementation
public abstract class Repository : IRepository {{
// CATASTROPHIC PATTERN: Factory call in field initializer
protected AppIdentityDbContext context = AppDbContextFactory.Create();
public AppIdentityDbContext AppContext() {{
return context; // Exposes the factory-created context
}}
// ALL {total_files} REPOSITORIES INHERIT THIS DISASTER PATTERN
// Generic methods using the shared context field
public virtual T Get<T>(int id) where T : class {{
return context.Set<T>().Find(id);
}}
}}
// Factory Implementation - NO OPTIMIZATION
public class AppDbContextFactory {{
public static AppIdentityDbContext Create() {{
return new AppIdentityDbContext(); // NEW INSTANCE EVERY TIME!
// No connection pooling
// No instance reuse
// No caching
// Loads {config_lines:.0f} lines of configuration EVERY TIME
}}
}}
"""
story.append(Preformatted(repo_code, code_style))
story.append(Spacer(1, 12))
# Repository Disaster Impact
story.append(Paragraph("Repository Disaster Impact:", subheading_style))
repo_impact = f"""
<b>Repository Pattern Mathematics:</b>
{total_files} repository classes total in system
• Each repository inherits Repository base class
• Each instantiation = AppDbContextFactory.Create() call
• Each Create() call = {config_lines:.0f} lines of configuration loaded
• Memory per repository: {config_lines * 0.001:.1f}GB for configuration alone
{repository_instances_per_request} repositories used per typical request
"""
story.append(Paragraph(repo_impact, styles['Normal']))
story.append(Spacer(1, 20))
# 1.3 UnitOfWork Anti-Pattern Catastrophe
story.append(Paragraph("1.3 UnitOfWork Anti-Pattern Catastrophe", subheading_style))
story.append(Paragraph(f"<b>Critical Finding:</b> Creates {repository_instances_per_request} repository instances in constructor.", styles['Normal']))
story.append(Spacer(1, 12))
# UnitOfWork code example
unitofwork_code = f"""
public class UnitOfWork {{
public UnitOfWork() {{
InitializeRepositories();
}}
private void InitializeRepositories() {{
// EACH LINE CREATES NEW REPOSITORY WITH NEW DBCONTEXT
CostingRepository = new CostingRepository(); // DbContext #1
UnitOfMeasurementRepository = new UnitOfMeasurementRepository(); // DbContext #2
CompanyRepository = new CompanyRepository(); // DbContext #3
PlantRepository = new PlantRepository(); // DbContext #4
PartsRepository = new PartsRepository(); // DbContext #5
GeographyRepository = new GeographyRepository(); // DbContext #6
TechnologyRepository = new TechnologyRepository(); // DbContext #7
//... continues for {repository_instances_per_request} total repositories
PartFamilyRepository = new PartFamilyRepository(); // DbContext #{repository_instances_per_request}
}}
}}
"""
story.append(Preformatted(unitofwork_code, code_style))
story.append(Spacer(1, 20))
# 1.4 Business Service Usage Pattern
story.append(Paragraph("1.4 Business Service Usage Pattern", subheading_style))
business_services = max(1, total_files // 3) # Estimate business services
story.append(Paragraph(f"<b>Critical Finding:</b> {business_services} UnitOfWork instantiations across business layer.", styles['Normal']))
story.append(Spacer(1, 12))
# Service layer impact
service_impact = f"""
<b>Service Layer Impact:</b>
{business_services} UnitOfWork creation points across business services
• Each creates {repository_instances_per_request} DbContext instances
• Potential instances: {business_services} × {repository_instances_per_request} = {business_services * repository_instances_per_request} DbContext instances
• Memory disaster: {business_services} × {memory_per_request_gb:.1f}GB = {business_services * memory_per_request_gb:.1f}GB potential usage
• Connection catastrophe: {business_services} × {repository_instances_per_request} = {business_services * repository_instances_per_request} potential connections
• Processing nightmare: {business_services} × {total_processing_time:.0f} seconds = {business_services * total_processing_time:.0f} seconds
"""
story.append(Paragraph(service_impact, styles['Normal']))
story.append(Spacer(1, 20))
# 1.5 Data Integrity Disaster Analysis
story.append(Paragraph("1.5 Data Integrity Disaster Analysis", subheading_style))
story.append(Paragraph(f"<b>Critical Finding:</b> {optional_relationships/relationship_configs*100:.1f}% of relationships are optional/nullable.", styles['Normal']))
story.append(Spacer(1, 12))
# Data integrity code example
data_integrity_code = f"""
// DATA INTEGRITY FAILURE PATTERN (REPEATED {optional_relationships} TIMES):
modelBuilder.Entity<Costing>()
.HasOptional(pk => pk.WorkingPart) // NULLABLE!
.WithMany(cl => cl.BaseCostings)
.HasForeignKey(fk => fk.WorkingPartIdRef); // ALLOWS NULL!
"""
story.append(Preformatted(data_integrity_code, code_style))
story.append(Spacer(1, 12))
# Business impact
business_impact = f"""
<b>BUSINESS IMPACT:</b>
• Costing records without Parts = invalid business data
• No database-level constraint enforcement
• Application code must handle null checks everywhere
• Data corruption inevitable over time
<b>Data Integrity Statistics:</b>
• Relationship Data Integrity Analysis:
• Total Relationships: {relationship_configs}
• Optional Relationships (HasOptional): {optional_relationships} ({optional_relationships/relationship_configs*100:.1f}%)
"""
story.append(Paragraph(business_impact, styles['Normal']))
story.append(Spacer(1, 20))
# 1.6 Navigation Property Collision Disaster
story.append(Paragraph("1.6 Navigation Property Collision Disaster", subheading_style))
story.append(Paragraph(f"<b>Critical Finding:</b> {collection_conflicts} collection name conflicts.", styles['Normal']))
story.append(Spacer(1, 12))
# Navigation property code example
nav_property_code = f"""
modelBuilder.Entity<Costing>()
.HasOptional(pk => pk.WorkingPart)
.WithMany(cl => cl.BaseCostings) // BaseCostings collection
.HasForeignKey(fk => fk.WorkingPartIdRef);
modelBuilder.Entity<Costing>()
.HasOptional(pk => pk.BoughtOutPart)
.WithMany(cl => cl.BaseCostings) // SAME BaseCostings
.HasForeignKey(fk => fk.BoughtOutPartIdRef);
// ENTITY FRAMEWORK CANNOT DETERMINE WHICH RELATIONSHIP TO USE!
"""
story.append(Preformatted(nav_property_code, code_style))
story.append(Spacer(1, 12))
# Navigation property impact
nav_impact = f"""
<b>Navigation Property Impact:</b>
• Collection Name Conflict Analysis: Total Collection Conflicts: {collection_conflicts}
• Pattern: Multiple relationships using same collection name
• EF Mapping Result: Ambiguous navigation properties
• Runtime Impact: Navigation properties return NULL unexpectedly
• Query Generation: Incorrect JOIN conditions
• Business Logic: Calculation errors due to wrong data
• Root Cause: "Object Reference Errors" in business logic
"""
story.append(Paragraph(nav_impact, styles['Normal']))
story.append(Spacer(1, 20))
# 2. Business Logic Layer - SERVICE MONOLITH DISASTERS
story.append(Paragraph("2. Business Logic Layer - SERVICE MONOLITH DISASTERS", subheading_style))
# 2.1 Extreme Service Monoliths - CATASTROPHIC SCALE
story.append(Paragraph("2.1 Extreme Service Monoliths - CATASTROPHIC SCALE", subheading_style))
story.append(Paragraph("<b>Critical Finding:</b> Business logic concentrated in massive single files", styles['Normal']))
story.append(Spacer(1, 12))
# Service monolith analysis
largest_file = max(analysis.file_analyses, key=lambda x: x.lines_of_code) if analysis.file_analyses else None
second_largest = sorted(analysis.file_analyses, key=lambda x: x.lines_of_code, reverse=True)[1] if len(analysis.file_analyses) > 1 else None
third_largest = sorted(analysis.file_analyses, key=lambda x: x.lines_of_code, reverse=True)[2] if len(analysis.file_analyses) > 2 else None
if largest_file:
service_monolith = f"""
<b>Service Monolith Analysis:</b>
{largest_file.path}: {largest_file.lines_of_code:,} lines (EXTREME MONOLITH)
"""
if second_largest:
service_monolith += f"{second_largest.path}: {second_largest.lines_of_code:,} lines (EXTREME MONOLITH)\n"
if third_largest:
service_monolith += f"{third_largest.path}: {third_largest.lines_of_code:,} lines (MASSIVE MONOLITH)\n"
total_monolith_lines = largest_file.lines_of_code
if second_largest:
total_monolith_lines += second_largest.lines_of_code
if third_largest:
total_monolith_lines += third_largest.lines_of_code
service_monolith += f"""
• Combined Total: {total_monolith_lines:,} lines in just 3 service files
• Average Method Size: {total_monolith_lines // 50:.0f} lines per method
"""
story.append(Paragraph(service_monolith, styles['Normal']))
story.append(PageBreak())
# SECTION 4: DETAILED CODE ANALYSIS BY LAYER
story.append(Paragraph("SECTION 4: DETAILED CODE ANALYSIS BY LAYER", section_style))
# Perform layer-by-layer analysis
try:
# 1. Controller/API Layer Analysis
story.append(Paragraph("1. API/Controller Layer Analysis", subheading_style))
controller_analysis = self._analyze_controller_layer(analysis)
controller_details = f"""
<b>Controller/API Layer Statistics:</b><br/>
• <b>Total Controllers:</b> {controller_analysis['controller_count']}<br/>
• <b>Total API Endpoints:</b> {controller_analysis['total_endpoints']}+<br/>
• <b>Largest Controller:</b> {controller_analysis['largest_controller']}<br/>
• <b>Security Issues:</b> {controller_analysis['security_issues']}<br/>
"""
story.append(Paragraph(controller_details, styles['Normal']))
story.append(Spacer(1, 15))
# 2. Service/Business Logic Layer Analysis
story.append(Paragraph("2. Service/Business Logic Layer Analysis", subheading_style))
backend_patterns = self._analyze_backend_patterns(analysis)
service_details = f"""
<b>Service Layer Statistics:</b><br/>
• <b>Pattern Detected:</b> {backend_patterns['service_layer']['pattern']}<br/>
• <b>Service Files:</b> {backend_patterns['service_layer']['service_files']}<br/>
• <b>Largest Service:</b> {backend_patterns['service_layer']['largest_service']}<br/>
• <b>Issues:</b> {backend_patterns['service_layer']['issues']}<br/>
"""
story.append(Paragraph(service_details, styles['Normal']))
story.append(Spacer(1, 15))
# 3. Repository/Data Access Layer Analysis
story.append(Paragraph("3. Repository/Data Access Layer Analysis", subheading_style))
repo_details = f"""
<b>Repository Layer Statistics:</b><br/>
• <b>Pattern Detected:</b> {backend_patterns['repository_layer']['pattern']}<br/>
• <b>Repository Files:</b> {backend_patterns['repository_layer']['repository_files']}<br/>
• <b>Factory Pattern:</b> {backend_patterns['repository_layer']['factory_usage']}<br/>
• <b>Issues:</b> {backend_patterns['repository_layer']['issues']}<br/>
"""
story.append(Paragraph(repo_details, styles['Normal']))
story.append(Spacer(1, 15))
# 4. Data/Model Layer Analysis
story.append(Paragraph("4. Data/Model Layer Analysis", subheading_style))
data_details = f"""
<b>Data Layer Statistics:</b><br/>
• <b>Pattern Detected:</b> {backend_patterns['data_layer']['pattern']}<br/>
• <b>Configuration Files:</b> {backend_patterns['data_layer']['config_files']}<br/>
• <b>Configuration Lines:</b> {backend_patterns['data_layer']['config_lines']:,}<br/>
• <b>Issues:</b> {backend_patterns['data_layer']['issues']}<br/>
"""
story.append(Paragraph(data_details, styles['Normal']))
story.append(Spacer(1, 15))
# 5. Frontend Layer Analysis
story.append(Paragraph("5. Frontend Layer Analysis", subheading_style))
frontend_analysis_layer = self._analyze_frontend_layer(
[fa for fa in analysis.file_analyses if any(ext in str(fa.path).lower() for ext in ['.js', '.jsx', '.ts', '.tsx', '.vue', '.html', '.css'])]
)
story.append(Paragraph(frontend_analysis_layer, styles['Normal']))
story.append(Spacer(1, 15))
# 6. Layer Interaction Analysis
story.append(Paragraph("6. Layer Interaction Analysis", subheading_style))
interaction_analysis = f"""
<b>Layer Dependencies:</b><br/>
• Controllers depend on: Service Layer<br/>
• Services depend on: Repository Layer<br/>
• Repositories depend on: Data/Model Layer<br/>
• Frontend interacts with: API/Controller Layer<br/>
<br/>
<b>Potential Issues:</b><br/>
• Tight coupling between layers can reduce maintainability<br/>
• Missing abstraction layers may cause scalability issues<br/>
• Direct data access from controllers bypasses business logic<br/>
"""
story.append(Paragraph(interaction_analysis, styles['Normal']))
story.append(Spacer(1, 20))
except Exception as e:
print(f"⚠️ Error generating layer analysis: {e}")
import traceback
traceback.print_exc()
# Fallback content
story.append(Paragraph("Layer-by-layer analysis in progress. This section provides detailed analysis of each architectural layer in your codebase.", styles['Normal']))
story.append(Paragraph(f"<b>Note:</b> Analysis error occurred: {str(e)}", styles['Normal']))
story.append(Spacer(1, 15))
story.append(PageBreak())
# SECTION 6: SECURITY VULNERABILITY ASSESSMENT
story.append(Paragraph("COMPREHENSIVE SECURITY VULNERABILITY ASSESSMENT", section_style))
security_issues = self._identify_security_vulnerabilities(analysis)
story.append(Paragraph(security_issues, styles['Normal']))
story.append(Spacer(1, 15))
# Add code snippets from vulnerable files
story.append(Paragraph("<b>Code Examples from Vulnerable Files:</b>", subheading_style))
# Find files with security issues
vulnerable_files = []
for fa in analysis.file_analyses:
if fa.issues_found:
issues_str = str(fa.issues_found).lower()
if any(keyword in issues_str for keyword in ['security', 'vulnerability', 'injection', 'xss', 'csrf', 'auth', 'password', 'token', 'session', 'cors']):
vulnerable_files.append(fa)
# Show code snippets from top 5 vulnerable files
for i, fa in enumerate(vulnerable_files[:5], 1):
story.append(Paragraph(f"<b>{i}. {str(fa.path)}</b> (Security Score: {fa.severity_score:.1f}/10)", subheading_style))
# Get file content
file_content = getattr(fa, 'content', '') or ''
if file_content:
# Extract first 100 lines or 2000 characters (whichever is smaller)
content_lines = file_content.split('\n')
max_lines = min(100, len(content_lines))
code_snippet = '\n'.join(content_lines[:max_lines])
# Truncate if too long
if len(code_snippet) > 3000:
code_snippet = code_snippet[:3000] + "\n... [truncated - showing first part of file]"
story.append(Paragraph("<b>Vulnerable Code:</b>", styles['Heading']))
story.append(Preformatted(code_snippet, code_style))
story.append(Spacer(1, 8))
# Show specific security issues found
if fa.issues_found:
story.append(Paragraph("<b>Security Issues Identified:</b>", styles['Heading']))
if isinstance(fa.issues_found, (list, tuple)):
for idx, issue in enumerate(fa.issues_found[:5], 1):
issue_str = str(issue)
if any(keyword in issue_str.lower() for keyword in ['security', 'vulnerability', 'injection', 'xss', 'csrf', 'auth', 'password', 'token']):
story.append(Paragraph(f"{issue_str}", styles['Normal']))
else:
story.append(Paragraph(f"{str(fa.issues_found)}", styles['Normal']))
story.append(Spacer(1, 12))
story.append(PageBreak())
# SECTION 7: PERFORMANCE ANALYSIS
story.append(Paragraph("COMPREHENSIVE PERFORMANCE IMPACT ANALYSIS", section_style))
performance_analysis = self._analyze_performance_issues(analysis)
story.append(Paragraph(performance_analysis, styles['Normal']))
story.append(PageBreak())
# SECTION 9: FILES REQUIRING IMMEDIATE ATTENTION
story.append(Paragraph("SECTION 8: FILES REQUIRING IMMEDIATE ATTENTION", section_style))
# Top 20 Critical Files Table
critical_files = sorted(analysis.file_analyses, key=lambda x: x.severity_score)[:20]
story.append(Paragraph("Create a prioritized table of the top 20 worst files:", styles['Normal']))
if critical_files:
attention_data = [['Rank', 'File Path', 'Lines', 'Quality Score', 'Issues', 'Priority']]
for i, fa in enumerate(critical_files, 1):
if fa.severity_score < 4:
priority = "CRITICAL"
elif fa.severity_score < 6:
priority = "HIGH"
else:
priority = "MEDIUM"
file_path = str(fa.path)[:40] + '...' if len(str(fa.path)) > 40 else str(fa.path)
issues_count = len(fa.issues_found) if isinstance(fa.issues_found, (list, tuple)) else 0
attention_data.append([
str(i),
file_path,
str(fa.lines_of_code),
f"{fa.severity_score:.1f}/10",
str(issues_count),
priority
])
attention_table = Table(attention_data, colWidths=[50, 200, 60, 80, 60, 80])
attention_table.setStyle(TableStyle([
('BACKGROUND', (0, 0), (-1, 0), colors.HexColor('#1e40af')),
('TEXTCOLOR', (0, 0), (-1, 0), colors.white),
('ALIGN', (0, 0), (-1, -1), 'CENTER'),
('FONTNAME', (0, 0), (-1, 0), 'Helvetica-Bold'),
('FONTSIZE', (0, 0), (-1, 0), 9),
('FONTSIZE', (0, 1), (-1, -1), 8),
('BOTTOMPADDING', (0, 0), (-1, 0), 12),
('BACKGROUND', (0, 1), (-1, -1), colors.HexColor('#f8fafc')),
('GRID', (0, 0), (-1, -1), 1, colors.HexColor('#e2e8f0'))
]))
story.append(attention_table)
story.append(Spacer(1, 20))
# Priority Recommendations for top 5
story.append(Paragraph("Then provide detailed recommendations for top 5:", styles['Normal']))
story.append(Paragraph("Priority Recommendations:", subheading_style))
for i, fa in enumerate(critical_files[:5], 1):
story.append(Paragraph(f"<b>{i}. {str(fa.path)}</b> (Score: {fa.severity_score:.1f}/10)", subheading_style))
# File information
story.append(Paragraph(f"<b>Language:</b> {fa.language}", styles['Normal']))
story.append(Paragraph(f"<b>Lines of Code:</b> {fa.lines_of_code:,}", styles['Normal']))
story.append(Paragraph(f"<b>Complexity Score:</b> {fa.complexity_score:.1f}/10", styles['Normal']))
story.append(Spacer(1, 8))
# Get actual code content to display
file_content = getattr(fa, 'content', '') or ''
# Display code snippet
if file_content:
story.append(Paragraph("<b>Current Code:</b>", styles['Heading']))
# Extract first 150 lines for priority recommendations (increased for more detail)
content_lines = file_content.split('\n')
max_lines = min(150, len(content_lines))
code_snippet = '\n'.join(content_lines[:max_lines])
# Truncate if too long (increased from 2000 to 4000 chars)
if len(code_snippet) > 4000:
code_snippet = code_snippet[:4000] + "\n... [truncated - showing first part of file]"
story.append(Preformatted(code_snippet, code_style))
story.append(Spacer(1, 8))
# Issues and recommendations (TAILORED)
story.append(Paragraph("<b>Issues and Recommendations:</b>", styles['Heading']))
tailored_recs = self._derive_file_recommendations(fa)
if tailored_recs:
for idx, rec in enumerate(tailored_recs, 1):
story.append(Paragraph(f"<b>Issue {idx}:</b> {rec['issue']}", styles['Normal']))
story.append(Paragraph(f" <b>Impact:</b> {rec['impact']}", styles['Normal']))
story.append(Paragraph(f" <b>Action:</b> {rec['action']}", styles['Normal']))
story.append(Paragraph(f" <b>Estimated Time:</b> {rec['hours']} hours", styles['Normal']))
story.append(Spacer(1, 5))
else:
# Minimal fallback when no signals are available
story.append(Paragraph(f"<b>Issue:</b> Needs refactor and tests", styles['Normal']))
story.append(Paragraph(f" <b>Impact:</b> Maintainability and correctness risk", styles['Normal']))
story.append(Paragraph(f" <b>Action:</b> Add tests, split large functions, and improve error handling", styles['Normal']))
story.append(Paragraph(f" <b>Estimated Time:</b> {max(1, fa.lines_of_code // 120)} hours", styles['Normal']))
# Show all issues found
if fa.issues_found and len(fa.issues_found) > 0:
story.append(Spacer(1, 5))
story.append(Paragraph("<b>All Issues Identified:</b>", styles['Heading']))
for idx, issue in enumerate(fa.issues_found[:5], 1):
story.append(Paragraph(f" {idx}. {issue}", styles['Normal']))
if len(fa.issues_found) > 5:
story.append(Paragraph(f" ... and {len(fa.issues_found) - 5} more issues", styles['Normal']))
story.append(Spacer(1, 15))
story.append(PageBreak())
# SECTION 10: COMPREHENSIVE FIX ROADMAP
story.append(Paragraph("SECTION 9: COMPREHENSIVE FIX ROADMAP", section_style))
roadmap = self._create_fix_roadmap(analysis)
story.append(Paragraph(roadmap, styles['Normal']))
story.append(PageBreak())
# SECTION 11: CODE EXAMPLES - PROBLEMS AND SOLUTIONS
story.append(Paragraph("SECTION 10: CODE EXAMPLES - PROBLEMS AND SOLUTIONS", section_style))
story.append(Paragraph("Actual problematic code examples with suggested fixes:", styles['Normal']))
# Get examples of problematic code - exclude files already shown in Section 8 to avoid duplication
critical_files_8 = {str(fa.path) for fa in sorted(analysis.file_analyses, key=lambda x: x.severity_score)[:20]}
problematic_files = [fa for fa in analysis.file_analyses if fa.severity_score < 6 and fa.issues_found and str(fa.path) not in critical_files_8][:10]
if problematic_files:
for i, fa in enumerate(problematic_files, 1):
story.append(Paragraph(f"<b>Example {i}: {fa.language.upper()} Code Quality Issues</b>", subheading_style))
story.append(Paragraph(f"Found in: {str(fa.path)} ({fa.lines_of_code} lines)", styles['Normal']))
# Get actual code content
file_content = getattr(fa, 'content', '') or ''
# Problematic code section
story.append(Paragraph("<b>❌ PROBLEMATIC CODE:</b>", styles['Heading']))
if file_content:
# Extract relevant code snippet (200 lines for comprehensive detail)
content_lines = file_content.split('\n')
max_lines = min(200, len(content_lines))
code_snippet = '\n'.join(content_lines[:max_lines])
# Truncate if too long (5000 chars for much more code)
if len(code_snippet) > 5000:
code_snippet = code_snippet[:5000] + "\n... [truncated for brevity]"
story.append(Preformatted(code_snippet, code_style))
else:
# Fallback if no content available
no_content_msg = f"""
// File content not available for display
// This file has quality issues that need attention
"""
story.append(Preformatted(no_content_msg, code_style))
# Problems identified
story.append(Paragraph("<b>Issues Identified:</b>", styles['Heading']))
if fa.issues_found:
# Show up to 8 issues (more comprehensive)
for idx, issue in enumerate(fa.issues_found[:8], 1):
story.append(Paragraph(f"{idx}. {issue}", styles['Normal']))
else:
story.append(Paragraph("• Poor code structure", styles['Normal']))
story.append(Paragraph("• Lack of error handling", styles['Normal']))
story.append(Paragraph("• Missing documentation", styles['Normal']))
story.append(Spacer(1, 10))
# Recommendations section
story.append(Paragraph("<b>✅ RECOMMENDED FIXES:</b>", styles['Heading']))
if fa.recommendations:
# Show up to 8 recommendations
for rec in fa.recommendations[:8]:
story.append(Paragraph(f"{rec}", styles['Normal']))
else:
story.append(Paragraph("• Refactor into smaller, focused functions", styles['Normal']))
story.append(Paragraph("• Add proper error handling and validation", styles['Normal']))
story.append(Paragraph("• Improve code documentation and comments", styles['Normal']))
story.append(Spacer(1, 15))
else:
story.append(Paragraph("No problematic files found in the analysis. All files meet quality standards.", styles['Normal']))
story.append(PageBreak())
# SECTION 12: JUNIOR DEVELOPER GUIDE
story.append(Paragraph("SECTION 11: JUNIOR DEVELOPER GUIDE", section_style))
junior_guide = self._create_junior_developer_guide(analysis)
# Use a paragraph style with minimal spacing for the junior guide
guide_style = ParagraphStyle(
'JuniorGuide',
parent=styles['Normal'],
fontSize=10,
spaceBefore=0,
spaceAfter=0,
leading=14, # Reduced line spacing
alignment=TA_LEFT
)
story.append(Paragraph(junior_guide, guide_style))
story.append(Spacer(1, 15))
# Add code examples from the codebase
story.append(Paragraph("<b>Real Code Examples from This Codebase:</b>", subheading_style))
# Get problematic files for examples
problematic_files = [fa for fa in analysis.file_analyses if fa.severity_score < 6]
problematic_files.sort(key=lambda x: x.severity_score) # Sort by worst first
# Show code examples from top 5 problematic files
for i, fa in enumerate(problematic_files[:5], 1):
story.append(Paragraph(f"<b>Example {i}: {str(fa.path)}</b> (Quality Score: {fa.severity_score:.1f}/10)", subheading_style))
# Get file content
file_content = getattr(fa, 'content', '') or ''
if file_content:
# Extract first 80 lines or 2000 characters
content_lines = file_content.split('\n')
max_lines = min(80, len(content_lines))
code_snippet = '\n'.join(content_lines[:max_lines])
# Truncate if too long
if len(code_snippet) > 2500:
code_snippet = code_snippet[:2500] + "\n... [truncated - showing first part of file]"
story.append(Paragraph("<b>Current Code (Needs Improvement):</b>", styles['Heading']))
story.append(Preformatted(code_snippet, code_style))
story.append(Spacer(1, 8))
# Show issues
if fa.issues_found:
story.append(Paragraph("<b>Problems Identified:</b>", styles['Heading']))
if isinstance(fa.issues_found, (list, tuple)):
for issue in fa.issues_found[:5]:
story.append(Paragraph(f"{str(issue)}", styles['Normal']))
else:
story.append(Paragraph(f"{str(fa.issues_found)}", styles['Normal']))
# Show recommendations
if fa.recommendations:
story.append(Paragraph("<b>Recommended Improvements:</b>", styles['Heading']))
if isinstance(fa.recommendations, (list, tuple)):
for rec in fa.recommendations[:5]:
story.append(Paragraph(f"{str(rec)}", styles['Normal']))
else:
story.append(Paragraph(f"{str(fa.recommendations)}", styles['Normal']))
story.append(Spacer(1, 12))
# Add examples of good patterns if available
good_files = [fa for fa in analysis.file_analyses if fa.severity_score >= 8][:3]
if good_files:
story.append(Paragraph("<b>Examples of Good Code Patterns:</b>", subheading_style))
for i, fa in enumerate(good_files, 1):
story.append(Paragraph(f"<b>Good Example {i}: {str(fa.path)}</b> (Quality Score: {fa.severity_score:.1f}/10)", subheading_style))
file_content = getattr(fa, 'content', '') or ''
if file_content:
content_lines = file_content.split('\n')
max_lines = min(50, len(content_lines))
code_snippet = '\n'.join(content_lines[:max_lines])
if len(code_snippet) > 2000:
code_snippet = code_snippet[:2000] + "\n... [truncated]"
story.append(Paragraph("<b>Well-Structured Code:</b>", styles['Heading']))
story.append(Preformatted(code_snippet, code_style))
story.append(Spacer(1, 8))
story.append(PageBreak())
# SECTION 11A: ORM/DATABASE CONFIGURATION ANALYSIS
story.append(Paragraph("SECTION 11A: DATABASE/ORM CONFIGURATION ANALYSIS", section_style))
orm_analysis = self._analyze_orm_configuration(analysis)
# Only show this section if ORM is detected
if orm_analysis.get('has_orm', False):
orm_details = f"""
<b>Detected ORM Technology:</b> {orm_analysis['orm_name']}<br/>
<b>Configuration Files:</b> {orm_analysis['config_files']}<br/>
<b>Total Relationships:</b> {orm_analysis['total_relationships']}<br/>
<b>Optional Relationships:</b> {orm_analysis['optional_relationships']} ({orm_analysis['optional_percent']:.1f}%)<br/>
<b>Required Relationships:</b> {orm_analysis['required_relationships']} ({orm_analysis['required_percent']:.1f}%)<br/>
<b>Sample Schema Files:</b> {', '.join(orm_analysis['sample_files'][:3]) if orm_analysis['sample_files'] else 'None'}<br/>
"""
story.append(Paragraph(orm_details, styles['Normal']))
else:
story.append(Paragraph(f"<b>No ORM Detected:</b> {orm_analysis.get('summary', 'This project does not use a standard ORM framework.')}", styles['Normal']))
story.append(Paragraph("Note: This analysis section is skipped when no ORM configuration is found in the codebase.", styles['Normal']))
story.append(PageBreak())
# SECTION 11B: DATA ACCESS LAYER ANALYSIS
story.append(Paragraph("SECTION 11B: DATA ACCESS LAYER ANALYSIS", section_style))
repo_analysis = self._analyze_repository_pattern(analysis)
# Only show details if repositories are found
if repo_analysis.get('has_repos', False):
repo_details = f"""
<b>Detected Pattern:</b> {repo_analysis['pattern']}<br/>
<b>Total Repository/Model Files:</b> {repo_analysis['total_repositories']}<br/>
<b>Average Repository Size:</b> {repo_analysis['avg_repo_size']:.0f} lines<br/>
<b>Estimated Repositories Per Request:</b> {repo_analysis['repositories_per_request']}<br/>
<b>Factory Pattern Files:</b> {repo_analysis['factory_files']}<br/>
<b>UnitOfWork/Transaction Files:</b> {repo_analysis['uow_files']}<br/>
<b>Sample Files:</b> {', '.join(repo_analysis['sample_repositories'][:3]) if repo_analysis['sample_repositories'] else 'None'}<br/>
"""
story.append(Paragraph(repo_details, styles['Normal']))
else:
story.append(Paragraph("<b>No Repository Pattern Detected:</b> This project does not use a standard repository/data access pattern.", styles['Normal']))
story.append(PageBreak())
# SECTION 11C: N+1 QUERY ANALYSIS
story.append(Paragraph("SECTION 11C: N+1 QUERY PATTERN ANALYSIS", section_style))
nplusone_analysis = self._analyze_nplusone_sync(analysis)
story.append(Paragraph(f"<b>N+1 Query Analysis:</b> Potential N+1 patterns detected in {nplusone_analysis['nplusone_count']} data access files.", styles['Normal']))
story.append(Paragraph("Specific N+1 query examples with optimization recommendations are provided in detailed file analysis above.", styles['Normal']))
story.append(PageBreak())
# SECTION 11D: CONTROLLER ENDPOINTS
story.append(Paragraph("SECTION 11D: API CONTROLLER ENDPOINT EXPLOSION", section_style))
controller_endpoints = self._analyze_controller_endpoints(analysis)
endpoints_details = f"""
<b>Controller Endpoints Analysis:</b><br/>
• Total Controllers: {controller_endpoints['total_controllers']}<br/>
• Total Endpoints: {controller_endpoints['total_endpoints']}<br/>
• Average Endpoints Per Controller: {controller_endpoints['avg_endpoints']:.1f}<br/>
• Largest Controller: {controller_endpoints['largest_controller']}<br/>
• Largest Controller Endpoints: {controller_endpoints['largest_endpoint_count']}<br/>
• Dual Controller Patterns: {controller_endpoints['dual_controllers']}<br/>
"""
story.append(Paragraph(endpoints_details, styles['Normal']))
story.append(Spacer(1, 15))
# Add code snippets from controller files
story.append(Paragraph("<b>Controller Code Examples:</b>", subheading_style))
# Find controller files
controller_files = [fa for fa in analysis.file_analyses if 'controller' in str(fa.path).lower() or 'api' in str(fa.path).lower()]
# Sort by endpoint count (largest first)
controller_files_with_endpoints = []
for fa in controller_files:
content = getattr(fa, 'content', '') or ''
if not content:
continue
endpoint_count = content.count('@HttpGet') + content.count('@HttpPost') + \
content.count('@HttpPut') + content.count('@HttpDelete') + \
content.count('@RequestMapping') + content.count('@GetMapping') + \
content.count('@PostMapping') + content.count('@PutMapping') + \
content.count('@DeleteMapping') + content.count('@RestController')
controller_files_with_endpoints.append((fa, endpoint_count))
# Sort by endpoint count descending
controller_files_with_endpoints.sort(key=lambda x: x[1], reverse=True)
# Show code snippets from top 5 controllers with most endpoints
for i, (fa, endpoint_count) in enumerate(controller_files_with_endpoints[:5], 1):
story.append(Paragraph(f"<b>{i}. {str(fa.path)}</b> ({endpoint_count} endpoints, {fa.lines_of_code} lines)", subheading_style))
# Get file content
file_content = getattr(fa, 'content', '') or ''
if file_content:
# Extract first 120 lines or 3000 characters (whichever is smaller)
content_lines = file_content.split('\n')
max_lines = min(120, len(content_lines))
code_snippet = '\n'.join(content_lines[:max_lines])
# Truncate if too long
if len(code_snippet) > 3500:
code_snippet = code_snippet[:3500] + "\n... [truncated - showing first part of file]"
story.append(Paragraph("<b>Controller Code:</b>", styles['Heading']))
story.append(Preformatted(code_snippet, code_style))
story.append(Spacer(1, 8))
# Show endpoint count and issues
story.append(Paragraph(f"<b>Endpoint Count:</b> {endpoint_count} endpoints", styles['Normal']))
story.append(Paragraph(f"<b>Quality Score:</b> {fa.severity_score:.1f}/10", styles['Normal']))
if fa.issues_found:
story.append(Paragraph("<b>Issues Found:</b>", styles['Heading']))
if isinstance(fa.issues_found, (list, tuple)):
for issue in fa.issues_found[:3]:
story.append(Paragraph(f"{str(issue)}", styles['Normal']))
else:
story.append(Paragraph(f"{str(fa.issues_found)}", styles['Normal']))
story.append(Spacer(1, 12))
story.append(PageBreak())
# SECTION 11E: BULK UPLOAD SYSTEM
story.append(Paragraph("SECTION 11E: BULK UPLOAD SYSTEM ANALYSIS", section_style))
bulk_upload_analysis = self._analyze_bulk_upload_sync(analysis)
story.append(Paragraph(f"<b>Upload Classes: {bulk_upload_analysis['upload_classes']}</b>", styles['Normal']))
story.append(Paragraph(f"<b>Total Properties: {bulk_upload_analysis['total_properties']}</b>", styles['Normal']))
story.append(PageBreak())
# SECTION 11F: BACKGROUND PROCESSING
story.append(Paragraph("SECTION 11F: BACKGROUND PROCESSING ANALYSIS", section_style))
bg_processing = self._analyze_background_processing(analysis)
bg_details = f"""
<b>Background Processing Analysis:</b><br/>
• Manual Thread Creation Count: {bg_processing['manual_thread_count']}<br/>
• ThreadPool Usage: {bg_processing['threadpool_usage']}<br/>
• Thread Files: {bg_processing['thread_files']}<br/>
• Email Implementation: {bg_processing['email_implementation']}<br/>
• Email Files: {bg_processing['email_files']}<br/>
• Sample Files: {', '.join(bg_processing['sample_files'][:3])}<br/>
"""
story.append(Paragraph(bg_details, styles['Normal']))
story.append(PageBreak())
# SECTION 11G: PERFORMANCE PER LAYER
story.append(Paragraph("SECTION 11G: PERFORMANCE IMPACT PER LAYER", section_style))
perf_layer_analysis = self._analyze_performance_per_layer_sync(analysis)
perf_details = f"""
<b>Request Lifecycle Timing Breakdown:</b><br/>
• Controller Overhead: {perf_layer_analysis['controller_overhead']}<br/>
• Service Processing: {perf_layer_analysis['service_processing']}<br/>
• Database Queries: {perf_layer_analysis['database_queries']}<br/>
• Frontend Bundle: {perf_layer_analysis['frontend_bundle']}<br/>
• Total Frontend Lines: {perf_layer_analysis['total_frontend_lines']}<br/>
"""
story.append(Paragraph(perf_details, styles['Normal']))
story.append(PageBreak())
# SECTION 11H: SCALABILITY MATHEMATICAL ANALYSIS
story.append(Paragraph("SECTION 11H: SCALABILITY MATHEMATICAL ANALYSIS", section_style))
scalability_analysis = self._analyze_scalability_metrics(analysis, max_concurrent_requests, db_connections_per_request, default_pool_size, memory_per_request_gb, total_processing_time)
scalability_details = f"""
<b>Current System Capacity:</b><br/>
• Maximum Concurrent Requests: {scalability_analysis['current_rpm']}<br/>
• Requests Per Minute: {scalability_analysis['current_rpm']:.2f}<br/>
• Connection Pool Capacity: {default_pool_size} connections<br/>
• Database Connections Per Request: {db_connections_per_request}<br/>
• System Fails At: {max_concurrent_requests + 1} concurrent users<br/>
• Memory Per Request: {memory_per_request_gb:.1f}GB<br/>
• Processing Time Per Request: {total_processing_time:.0f} seconds<br/><br/>
<b>Required System Capacity:</b><br/>
• Target Concurrent Users: 500+ users<br/>
• Required RPM: {scalability_analysis['required_rpm']:,}<br/>
• Required Connection Pool: {scalability_analysis['required_pool_size']:.0f}+ connections<br/>
• Production SLA Target: 99.9% uptime<br/>
• Response Time Target: <2 seconds<br/><br/>
<b>Scalability Gap Analysis:</b><br/>
• Performance Gap: {scalability_analysis['gap_multiplier']:.0f}× improvement needed<br/>
• Current: {scalability_analysis['current_rpm']:.2f} RPM<br/>
• Required: {scalability_analysis['required_rpm']:,} RPM<br/>
• Gap: {scalability_analysis['rpm_gap']:.0f} RPM deficit<br/>
• <b>Conclusion: {scalability_analysis['conclusion']}</b><br/><br/>
<b>Infrastructure Requirements:</b><br/>
• With Current Architecture: Cannot scale beyond {max_concurrent_requests} users<br/>
• Connection Pool Exhaustion: Occurs at {max_concurrent_requests + 1} concurrent requests<br/>
• Memory Requirements: {memory_per_request_gb:.1f}GB per request = IMPOSSIBLE<br/>
• Processing Time: {total_processing_time:.0f}+ seconds (target: <2s) = FAILURE<br/>
• <b>Architectural Redesign Required: YES (MANDATORY)</b><br/>
"""
story.append(Paragraph(scalability_details, styles['Normal']))
story.append(PageBreak())
# SECTION 11I: TESTING INFRASTRUCTURE DEEP DIVE
story.append(Paragraph("SECTION 11I: TESTING INFRASTRUCTURE DEEP DIVE", section_style))
testing_deep_dive = self._analyze_testing_infrastructure_deep(analysis)
testing_details = f"""
<b>Test File Breakdown by Layer:</b><br/>
• Backend Test Files: {testing_deep_dive['backend_tests']}<br/>
• Frontend Test Files: {testing_deep_dive['frontend_tests']}<br/>
• Empty Test Files: {testing_deep_dive['empty_tests']}<br/>
• Total Test Coverage: {testing_deep_dive['overall_coverage']}%<br/><br/>
<b>Component Testing Breakdown:</b><br/>
• Unit Tests: {testing_deep_dive['unit_tests']}<br/>
• Integration Tests: {testing_deep_dive['integration_tests']}<br/>
• E2E Tests: {testing_deep_dive['e2e_tests']}<br/>
• Security Tests: {testing_deep_dive['security_tests']}<br/>
• Performance Tests: {testing_deep_dive['performance_tests']}<br/><br/>
<b>Test Quality Assessment:</b><br/>
• Test Quality Score: {testing_deep_dive['test_quality_score']}/100<br/>
• Critical Issues: {testing_deep_dive['critical_issues']}<br/>
• Recommendations: {testing_deep_dive['recommendations']}<br/>
"""
story.append(Paragraph(testing_details, styles['Normal']))
story.append(PageBreak())
# SECTION 11J: FRONTEND MONOLITH FILE-BY-FILE
story.append(Paragraph("SECTION 11J: FRONTEND MONOLITH FILE-BY-FILE ANALYSIS", section_style))
frontend_monolith = self._analyze_frontend_monoliths(analysis)
monolith_details = f"""
<b>Top 10 Largest Frontend Files:</b><br/>
{chr(10).join([f'{f["name"]}: {f["lines"]:,} lines' for f in frontend_monolith['largest_files'][:10]])}<br/><br/>
<b>Monolith Statistics:</b><br/>
• Total Monolith Lines: {frontend_monolith['total_monolith_lines']:,}<br/>
• Frontend Monolith Percentage: {frontend_monolith['monolith_percentage']:.1f}%<br/>
• Average Monolith Size: {frontend_monolith['avg_monolith_size']:.0f} lines<br/>
• Files Over 300 Lines: {frontend_monolith['large_files_count']}<br/>
"""
story.append(Paragraph(monolith_details, styles['Normal']))
story.append(PageBreak())
# SECTION 11K: DETAILED FIX ROADMAP WITH TIMELINE
story.append(Paragraph("SECTION 11K: DETAILED FIX ROADMAP WITH TIMELINE", section_style))
timeline_roadmap = self._create_timeline_roadmap(analysis, critical_count, high_priority_count)
story.append(Paragraph(timeline_roadmap, styles['Normal']))
story.append(PageBreak())
# SECTION 11L: EXPECTED OUTCOMES AFTER REDESIGN
story.append(Paragraph("SECTION 11L: EXPECTED OUTCOMES AFTER REDESIGN", section_style))
expected_outcomes = self._analyze_expected_outcomes(analysis, max_concurrent_requests, memory_per_request_gb, total_processing_time)
outcomes_table = f"""
<b>Before/After Metrics Comparison:</b><br/><br/>
<b>Concurrent Users Capacity:</b><br/>
• Before: {max_concurrent_requests} users<br/>
• After: 500+ users<br/>
• Improvement: {(500 / max(max_concurrent_requests, 1)):.0f}× more capacity<br/><br/>
<b>Response Times:</b><br/>
• Before: {total_processing_time:.0f}+ seconds<br/>
• After: <2 seconds<br/>
• Improvement: {(total_processing_time / 2):.0f}× faster<br/><br/>
<b>Memory Usage:</b><br/>
• Before: {memory_per_request_gb:.1f}GB per request<br/>
• After: <2GB per request<br/>
• Improvement: {(memory_per_request_gb / 2):.0f}× reduction<br/><br/>
<b>Business Benefits:</b><br/>
{chr(10).join([f"{benefit}" for benefit in expected_outcomes['business_benefits']])}<br/><br/>
<b>Cost Savings:</b><br/>
• Development Velocity: {expected_outcomes['velocity_improvement']}% faster<br/>
• Infrastructure Costs: {expected_outcomes['cost_reduction']}% reduction<br/>
• Maintenance Overhead: {expected_outcomes['maintenance_reduction']}% reduction<br/>
"""
story.append(Paragraph(outcomes_table, styles['Normal']))
story.append(PageBreak())
# SECTION 11M: DEVOPS INFRASTRUCTURE
story.append(Paragraph("SECTION 11M: DEVOPS INFRASTRUCTURE ANALYSIS", section_style))
devops_analysis = self._analyze_devops_infrastructure(analysis)
devops_details = f"""
<b>CI/CD Pipeline Configuration:</b><br/>
• CI/CD Files: {devops_analysis['cicd_files']}<br/>
• Docker Files: {devops_analysis['docker_files']}<br/>
• Health Checks: {devops_analysis['health_check_files']}<br/>
• Monitoring Files: {devops_analysis['monitoring_files']}<br/><br/>
<b>Security Hardening:</b><br/>
• Security Config Files: {devops_analysis['security_files']}<br/>
• Deployment Files: {devops_analysis['deployment_files']}<br/><br/>
<b>Recommendations:</b><br/>
{chr(10).join([f'{rec}' for rec in devops_analysis['recommendations']])}<br/>
"""
story.append(Paragraph(devops_details, styles['Normal']))
story.append(PageBreak())
# SECTION 12: KEY RECOMMENDATIONS SUMMARY
story.append(Paragraph("SECTION 12: KEY RECOMMENDATIONS SUMMARY", section_style))
recommendations = self._generate_key_recommendations(analysis)
story.append(Paragraph(recommendations, styles['Normal']))
story.append(PageBreak())
# SECTION 14: FOOTER
story.append(Paragraph("SECTION 13: REPORT CONCLUSION", section_style))
# Use previously calculated metrics
avg_quality = analysis.code_quality_score if analysis.code_quality_score else 5.0
# Get architecture pattern
arch_analysis = self._analyze_architecture_patterns(analysis)
detected_architecture = arch_analysis.get('project_type', 'Unknown')
# Build dynamic conclusion
conclusion_text = f"""
<b>CONCLUSION:</b><br/><br/>
The comprehensive technical analysis of this codebase has revealed significant areas requiring immediate attention and strategic improvements.
The {detected_architecture} demonstrates both strengths and areas for architectural enhancement to support scalability and maintainability.<br/><br/>
<b>Summary of Findings:</b><br/>
• Total Files Analyzed: {analysis.total_files:,}<br/>
• Total Lines of Code: {analysis.total_lines:,}<br/>
• Overall Code Quality Score: {avg_quality:.1f}/10<br/>
• Critical Issues Identified: {critical_count}<br/>
• High Priority Issues: {high_priority_count}<br/>
• Total Issues Found: {total_issues}+<br/><br/>
<b>Key Architectural Insights:</b><br/>
• Architecture Pattern: {detected_architecture}<br/>
• Primary Languages: {', '.join(list(analysis.languages.keys())[:5]) if analysis.languages else 'Unknown'}<br/>
• System Complexity: {'High' if analysis.code_quality_score < 5 else 'Moderate' if analysis.code_quality_score < 7 else 'Low'}<br/><br/>
<b>The Path Forward:</b><br/>
This report provides a comprehensive roadmap for improving code quality, security, and architectural design.
Immediate implementation of the recommended actions will significantly enhance system reliability, performance, and maintainability.<br/><br/>
By following the detailed implementation guide provided in this report, the codebase can evolve into a robust, scalable,
and secure enterprise-grade application capable of supporting growing business requirements while maintaining high code quality standards.<br/><br/>
<b>End of Comprehensive Analysis Report</b><br/><br/>
<b>Report Metadata:</b><br/>
• <b>Total Document Length:</b> 50+ pages of detailed technical analysis<br/>
• <b>Coverage:</b> 100% of identified issues across frontend, backend, database, security, performance, and testing<br/>
• <b>Actionable Items:</b> Complete implementation roadmap with specific code examples and detailed recommendations<br/>
• <b>Audience:</b> CEO, CTO, Senior Developers, Junior Developers, DevOps Teams<br/>
• <b>Generated:</b> {datetime.now().strftime('%B %d, %Y at %H:%M:%S')}<br/>
• <b>Status:</b> COMPLETE - Ready for Executive Decision and Implementation Planning<br/><br/>
This comprehensive technical assessment provides actionable recommendations for immediate improvement and long-term architectural enhancement.
"""
story.append(Paragraph(conclusion_text, styles['Normal']))
# Build PDF
try:
doc.build(story)
print(f"✅ Enhanced PDF report generated successfully: {output_path}")
except Exception as e:
print(f"❌ Error generating PDF: {e}")
raise
def _detect_technology_stack(self, analysis: RepositoryAnalysis) -> Dict[str, Any]:
"""Detect the actual technology stack from the codebase."""
languages = analysis.languages
detected = {
'primary_language': 'Unknown',
'backend_framework': 'Unknown',
'orm_database': 'Unknown',
'orm_name': 'Unknown',
'database_type': 'Unknown',
'is_csharp': False,
'is_nodejs': False,
'is_java': False,
'is_python': False,
'indicators': []
}
# Scan files for technology indicators
for fa in analysis.file_analyses:
file_path = str(fa.path).lower()
file_content = getattr(fa, 'content', '') or ''
# C# / .NET / Entity Framework detection
if '.cs' in file_path or '.csproj' in file_path:
detected['is_csharp'] = True
detected['primary_language'] = 'C#'
if 'entityframeworkcore' in file_content.lower() or 'dbcontext' in file_content.lower():
detected['orm_name'] = 'Entity Framework Core'
detected['orm_database'] = 'EF Core'
detected['indicators'].append('Entity Framework Core')
if 'appsettings.json' in file_path or 'web.config' in file_path:
detected['backend_framework'] = 'ASP.NET Core'
# Node.js / Express / Mongoose detection
if '.js' in file_path or '.ts' in file_path or 'package.json' in file_path:
if not detected['primary_language'] or detected['primary_language'] == 'Unknown':
if 'typescript' in languages:
detected['primary_language'] = 'TypeScript'
else:
detected['primary_language'] = 'JavaScript'
detected['is_nodejs'] = True
if 'express' in file_content.lower() or 'app.use' in file_content.lower():
detected['backend_framework'] = 'Express.js'
detected['indicators'].append('Express.js')
if 'mongoose' in file_content.lower() or 'mongoose.connect' in file_content.lower():
detected['orm_name'] = 'Mongoose'
detected['orm_database'] = 'Mongoose ODM'
detected['database_type'] = 'MongoDB'
detected['indicators'].append('Mongoose ODM')
if 'sequelize' in file_content.lower():
detected['orm_name'] = 'Sequelize'
detected['orm_database'] = 'Sequelize ORM'
detected['database_type'] = 'PostgreSQL/MySQL'
detected['indicators'].append('Sequelize ORM')
if 'typeorm' in file_content.lower():
detected['orm_name'] = 'TypeORM'
detected['orm_database'] = 'TypeORM'
detected['indicators'].append('TypeORM')
# Java / Spring Boot / Hibernate detection
if '.java' in file_path or 'pom.xml' in file_path or 'build.gradle' in file_path:
detected['is_java'] = True
detected['primary_language'] = 'Java'
if 'spring-boot' in file_content.lower() or '@springbootapplication' in file_content.lower():
detected['backend_framework'] = 'Spring Boot'
detected['indicators'].append('Spring Boot')
if 'hibernate' in file_content.lower() or 'jpa' in file_content.lower() or '@entity' in file_content.lower():
detected['orm_name'] = 'Hibernate/JPA'
detected['orm_database'] = 'Hibernate'
detected['indicators'].append('Hibernate/JPA')
# Python / Django / SQLAlchemy detection
if '.py' in file_path:
detected['is_python'] = True
if not detected['primary_language'] or detected['primary_language'] == 'Unknown':
detected['primary_language'] = 'Python'
if 'django' in file_content.lower() or 'models.py' in file_path:
detected['backend_framework'] = 'Django'
detected['orm_database'] = 'Django ORM'
detected['indicators'].append('Django')
if 'flask' in file_content.lower():
detected['backend_framework'] = 'Flask'
detected['indicators'].append('Flask')
if 'sqlalchemy' in file_content.lower():
detected['orm_name'] = 'SQLAlchemy'
detected['orm_database'] = 'SQLAlchemy'
detected['indicators'].append('SQLAlchemy')
# Set default values based on languages if not detected
if not detected['primary_language'] or detected['primary_language'] == 'Unknown':
if 'javascript' in languages or 'typescript' in languages:
detected['primary_language'] = 'JavaScript' if 'javascript' in languages else 'TypeScript'
elif 'python' in languages:
detected['primary_language'] = 'Python'
elif 'java' in languages:
detected['primary_language'] = 'Java'
elif 'csharp' in languages:
detected['primary_language'] = 'C#'
return detected
def _determine_project_type(self, analysis: RepositoryAnalysis) -> str:
"""Determine the type of project based on file analysis."""
languages = analysis.languages
if 'javascript' in languages or 'typescript' in languages:
if 'html' in languages or 'css' in languages:
return "Web Application"
return "Node.js Application"
elif 'python' in languages:
return "Python Application"
elif 'java' in languages:
return "Java Application"
elif 'csharp' in languages:
return ".NET Application"
else:
return "Multi-language Application"
def _analyze_project_purpose(self, analysis: RepositoryAnalysis) -> str:
"""Analyze the purpose of the project."""
repo_name = analysis.repo_path.split('/')[-1] if '/' in analysis.repo_path else analysis.repo_path
if 'api' in repo_name.lower():
return "API Service"
elif 'web' in repo_name.lower() or 'frontend' in repo_name.lower():
return "Web Frontend"
elif 'backend' in repo_name.lower() or 'server' in repo_name.lower():
return "Backend Service"
else:
return "Software Application"
def _determine_architecture_pattern(self, analysis: RepositoryAnalysis) -> str:
"""Determine the architecture pattern."""
large_files = [fa for fa in analysis.file_analyses if fa.lines_of_code > 500]
if len(large_files) > len(analysis.file_analyses) * 0.3:
return "Monolithic Architecture"
elif 'microservice' in str(analysis.repo_path).lower():
return "Microservices Architecture"
else:
return "Modular Architecture"
def _evaluate_technology_stack(self, analysis: RepositoryAnalysis) -> str:
"""Evaluate the technology stack."""
languages = analysis.languages
evaluation = "<b>Technology Stack Evaluation:</b><br/><br/>"
# Good choices
good_choices = []
if 'python' in languages:
good_choices.append("Python: Excellent for rapid development and maintainability")
if 'typescript' in languages:
good_choices.append("TypeScript: Provides type safety and better IDE support")
if 'javascript' in languages:
good_choices.append("JavaScript: Widely supported and flexible")
if good_choices:
evaluation += "✅ <b>Good choices:</b><br/>"
for choice in good_choices:
evaluation += f"{choice}<br/>"
# Problematic choices
problematic = []
if len(languages) > 5:
problematic.append("Too many languages: Increases complexity and maintenance overhead")
if 'php' in languages and 'python' in languages:
problematic.append("Mixed backend languages: Choose one primary backend language")
if problematic:
evaluation += "<br/>❌ <b>Problematic choices:</b><br/>"
for problem in problematic:
evaluation += f"{problem}<br/>"
# Recommendations
recommendations = []
if 'javascript' in languages and 'typescript' not in languages:
recommendations.append("Consider migrating to TypeScript for better type safety")
if len([fa for fa in analysis.file_analyses if fa.lines_of_code > 1000]) > 0:
recommendations.append("Refactor large files into smaller, focused modules")
if recommendations:
evaluation += "<br/>🔧 <b>Recommended upgrades:</b><br/>"
for rec in recommendations:
evaluation += f"{rec}<br/>"
return evaluation
def _analyze_code_organization(self, analysis: RepositoryAnalysis) -> str:
"""Analyze code organization and structure."""
large_files = [fa for fa in analysis.file_analyses if fa.lines_of_code > 500]
avg_file_size = analysis.total_lines / analysis.total_files if analysis.total_files > 0 else 0
organization = f"""
<b>Folder/File Structure Analysis:</b><br/>
• Total files: {analysis.total_files}<br/>
• Average file size: {avg_file_size:.0f} lines<br/>
• Large files (>500 lines): {len(large_files)} ({len(large_files)/analysis.total_files*100:.1f}%)<br/>
• Languages used: {len(analysis.languages)}<br/><br/>
<b>Organization Assessment:</b><br/>
"""
if len(large_files) > analysis.total_files * 0.2:
organization += "❌ <b>Poor organization:</b> Too many large files indicate poor separation of concerns<br/>"
else:
organization += "✅ <b>Good organization:</b> Most files are appropriately sized<br/>"
if len(analysis.languages) > 3:
organization += "⚠️ <b>Mixed languages:</b> Consider consolidating to reduce complexity<br/>"
else:
organization += "✅ <b>Language consistency:</b> Reasonable number of languages<br/>"
return organization
def _analyze_backend_layer(self, backend_files) -> str:
"""Analyze backend layer specifically."""
if not backend_files:
return "No backend files identified."
large_backend_files = [fa for fa in backend_files if fa.lines_of_code > 500]
avg_backend_size = sum(fa.lines_of_code for fa in backend_files) / len(backend_files)
analysis = f"""
<b>Backend Layer Analysis:</b><br/>
• Backend files: {len(backend_files)}<br/>
• Average size: {avg_backend_size:.0f} lines<br/>
• Large files: {len(large_backend_files)}<br/><br/>
<b>Monolithic Files Identified:</b><br/>
"""
for fa in large_backend_files[:3]:
analysis += f"• <b>{str(fa.path)}</b> - {fa.lines_of_code} lines (EXTREME MONOLITH)<br/>"
analysis += f" Location: {str(fa.path)}<br/>"
analysis += f" Problems: Poor maintainability, difficult testing, high complexity<br/><br/>"
analysis += "<b>Anti-Patterns Detected:</b><br/>"
analysis += "• God Object: Large files with multiple responsibilities<br/>"
analysis += "• Tight Coupling: High interdependency between modules<br/>"
analysis += "• Code Duplication: Repeated logic across files<br/><br/>"
return analysis
def _analyze_frontend_layer(self, frontend_files) -> str:
"""Analyze frontend layer specifically."""
if not frontend_files:
return "No frontend files identified."
large_frontend_files = [fa for fa in frontend_files if fa.lines_of_code > 300]
avg_frontend_size = sum(fa.lines_of_code for fa in frontend_files) / len(frontend_files)
analysis = f"""
<b>Frontend Layer Analysis:</b><br/>
• Frontend files: {len(frontend_files)}<br/>
• Average size: {avg_frontend_size:.0f} lines<br/>
• Large components: {len(large_frontend_files)}<br/><br/>
<b>Component Structure Issues:</b><br/>
• Large components indicate poor separation of concerns<br/>
• Missing component composition patterns<br/>
• Inconsistent state management approach<br/><br/>
<b>Bundle Size Issues:</b><br/>
• Large files contribute to increased bundle size<br/>
• Missing code splitting strategies<br/>
• Potential for tree shaking optimization<br/><br/>
<b>Performance Problems:</b><br/>
• Large components cause re-rendering issues<br/>
• Missing memoization for expensive operations<br/>
• Inefficient state updates and prop drilling<br/>
"""
return analysis
def _identify_security_vulnerabilities(self, analysis: RepositoryAnalysis) -> str:
"""Identify security vulnerabilities."""
security_issues = []
# Look for common security patterns in issues
for fa in analysis.file_analyses:
if fa.issues_found:
for issue in fa.issues_found:
issue_str = str(issue).lower()
if any(keyword in issue_str for keyword in ['sql', 'injection', 'xss', 'csrf', 'auth', 'password', 'token', 'session']):
security_issues.append(f"{str(fa.path)}: {issue}")
if not security_issues:
security_issues = [
"• Potential SQL injection vulnerabilities in database queries",
"• Missing input validation on user inputs",
"• Insecure authentication mechanisms",
"• Lack of proper session management",
"• Missing CSRF protection"
]
security_text = f"""
<b>Security Vulnerability Assessment:</b><br/><br/>
🔴 <b>CRITICAL Vulnerabilities:</b><br/>
{chr(10).join(security_issues[:3])}<br/><br/>
<b>Immediate Security Actions Required:</b><br/>
• Implement input validation and sanitization<br/>
• Add proper authentication and authorization<br/>
• Enable CSRF protection<br/>
• Implement secure session management<br/>
• Add security headers and HTTPS enforcement<br/>
"""
return security_text
def _analyze_performance_issues(self, analysis: RepositoryAnalysis) -> str:
"""Analyze performance issues."""
large_files = [fa for fa in analysis.file_analyses if fa.lines_of_code > 500]
avg_file_size = analysis.total_lines / analysis.total_files if analysis.total_files > 0 else 0
performance_text = f"""
<b>Performance Analysis:</b><br/><br/>
<b>Database Performance:</b><br/>
• Large files indicate potential N+1 query problems<br/>
• Missing database indexing strategies<br/>
• Inefficient data fetching patterns<br/><br/>
<b>API Response Times:</b><br/>
• Average file complexity: {avg_file_size:.0f} lines<br/>
• Large files cause increased processing time<br/>
• Missing caching strategies<br/><br/>
<b>Memory Usage:</b><br/>
{len(large_files)} files exceed optimal size limits<br/>
• Potential memory leaks in large components<br/>
• Inefficient data structures and algorithms<br/><br/>
<b>Bottlenecks Identified:</b><br/>
• Monolithic file structures<br/>
• Lack of code splitting and lazy loading<br/>
• Missing performance monitoring<br/>
• Inefficient state management<br/>
"""
return performance_text
def _analyze_testing_infrastructure(self, analysis: RepositoryAnalysis) -> str:
"""Analyze testing infrastructure."""
test_files = [fa for fa in analysis.file_analyses if 'test' in str(fa.path).lower() or fa.language in ['spec', 'test']]
test_coverage = len(test_files) / analysis.total_files * 100 if analysis.total_files > 0 else 0
testing_text = f"""
<b>Testing Infrastructure Assessment:</b><br/><br/>
<b>Test Coverage and Quality:</b><br/>
• Current Test Coverage: {test_coverage:.1f}%<br/>
• Assessment: {'POOR' if test_coverage < 30 else 'GOOD' if test_coverage > 70 else 'FAIR'}<br/><br/>
<b>Missing Tests:</b><br/>
• Unit Tests: Critical business logic lacks unit test coverage<br/>
• Integration Tests: API endpoints and database interactions untested<br/>
• E2E Tests: User workflows and critical paths not covered<br/><br/>
<b>Test Quality Issues:</b><br/>
• If tests exist, they likely lack proper assertions<br/>
• Missing test data setup and teardown<br/>
• No automated test execution in CI/CD pipeline<br/>
• Insufficient test documentation and maintenance<br/>
"""
return testing_text
def _create_fix_roadmap(self, analysis: RepositoryAnalysis) -> str:
"""Create comprehensive fix roadmap."""
critical_files = [fa for fa in analysis.file_analyses if fa.severity_score < 4]
high_priority_files = [fa for fa in analysis.file_analyses if 4 <= fa.severity_score < 6]
roadmap = f"""
<b>Comprehensive Fix Roadmap</b><br/><br/>
<b>Phase 1: Emergency Stabilization (24-48 Hours)</b><br/>
• Fix {len(critical_files)} critical files with quality scores below 4/10<br/>
• Address immediate security vulnerabilities<br/>
• Implement basic error handling and logging<br/>
• Set up monitoring and alerting systems<br/>
• Create emergency response procedures<br/><br/>
<b>Phase 2: Short-Term Improvements (1-2 Weeks)</b><br/>
• Refactor {len(high_priority_files)} high-priority files<br/>
• Implement comprehensive testing framework<br/>
• Add code review processes and guidelines<br/>
• Optimize database queries and performance<br/>
• Enhance security measures and validation<br/><br/>
<b>Phase 3: Medium-Term Refactoring (1-2 Months)</b><br/>
• Break down monolithic files into smaller modules<br/>
• Implement proper architecture patterns<br/>
• Add comprehensive documentation<br/>
• Optimize build and deployment processes<br/>
• Implement advanced monitoring and analytics<br/><br/>
<b>Phase 4: Long-Term Modernization (3-6 Months)</b><br/>
• Complete architectural overhaul if needed<br/>
• Implement advanced security measures<br/>
• Add comprehensive test coverage (80%+)<br/>
• Optimize for scalability and performance<br/>
• Implement CI/CD best practices<br/>
"""
return roadmap
def _create_junior_developer_guide(self, analysis: RepositoryAnalysis) -> str:
"""Generate AI-powered comprehensive junior developer guide based on actual codebase analysis."""
try:
# Detect project type
languages = analysis.languages or {}
has_react = any(lang.lower() in ['javascript', 'typescript', 'jsx', 'tsx'] for lang in languages.keys())
has_csharp = any(lang.lower() in ['csharp', 'c#'] for lang in languages.keys())
has_python = any(lang.lower() in ['python'] for lang in languages.keys())
has_java = any(lang.lower() in ['java'] for lang in languages.keys())
print(f"🔍 [JUNIOR GUIDE] Detected languages: {list(languages.keys())}")
# Get examples of problematic code from analysis
problematic_files = [fa for fa in analysis.file_analyses if fa.severity_score < 6][:10]
print(f"🔍 [JUNIOR GUIDE] Found {len(problematic_files)} problematic files")
# Prepare code examples - increased size for more detailed guide
code_examples = []
for fa in problematic_files:
if hasattr(fa, 'content') and fa.content:
code_snippet = fa.content[:2000] # Increased from 1000 to 2000 chars for more detail
issues_str = ', '.join(fa.issues_found[:5]) if isinstance(fa.issues_found, (list, tuple)) else 'No issues'
code_examples.append(f"File: {fa.path}\nLines: {fa.lines_of_code}\nIssues: {issues_str}\nCode:\n{code_snippet}\n")
# Show up to 8 code examples instead of 5 for more comprehensive guide
code_samples_text = "\n\n---CODE EXAMPLE SEPARATOR---\n\n".join(code_examples[:8]) if code_examples else "No code examples available"
print(f"🔍 [JUNIOR GUIDE] Prepared {len(code_examples)} code examples")
# Check if we have minimal data for guide generation
if not languages and not problematic_files:
print("⚠️ [JUNIOR GUIDE] Insufficient data for guide generation")
return self._create_fallback_guide(analysis)
# Build comprehensive prompt for AI
prompt = f"""
You are creating a JUNIOR DEVELOPER IMPLEMENTATION GUIDE for a codebase. Generate a comprehensive, practical guide that helps junior developers understand the current codebase and write better code.
PROJECT CONTEXT:
- Languages Used: {', '.join(languages.keys()) if languages else 'Unknown'}
- Total Files: {analysis.total_files}
- Total Lines: {analysis.total_lines:,}
- Average Code Quality: {analysis.code_quality_score:.1f}/10
- Has C#/.NET: {has_csharp}
- Has React/TypeScript: {has_react}
- Has Python: {has_python}
- Has Java: {has_java}
CURRENT CODEBASE ISSUES:
{analysis.architecture_assessment[:500] if analysis.architecture_assessment else 'No architecture assessment available'}
PROBLEMATIC CODE EXAMPLES FROM ANALYSIS:
{code_samples_text}
GENERATE A COMPREHENSIVE GUIDE INCLUDING:
1. UNDERSTANDING CURRENT SYSTEM PROBLEMS
1.1 How to Identify Monoliths
- Use actual patterns found in this codebase
- Show REAL examples from the problematic files above
- Explain what SPECIFIC problems this codebase has
1.2 How to Identify Database Issues
- Focus on actual database patterns in this project
- Use specific examples from the code
1.3 How to Identify Frontend Issues (if React detected)
- Show specific frontend patterns from this codebase
2. IMPLEMENTATION PATTERNS FOR NEW CODE
Generate templates based on the actual technologies used:
- For C# projects: Service, Repository, Controller patterns
- For React projects: Component, Hook, State management patterns
- Use the SAME coding style as the existing codebase
- Include dependency injection setup specific to this project
3. TESTING PATTERNS FOR NEW CODE
3.1 Unit Test Template - use actual testing frameworks in this codebase
3.2 Integration Test Template - based on the actual project structure
4. CODE REVIEW CHECKLIST
Create checklists based on ACTUAL issues found in this codebase:
4.1 What to REJECT - use specific issues from the analysis
4.2 What to REQUIRE - based on what's missing in current code
4.3 Performance Review Checklist - address actual performance issues found
4.4 Security Review Checklist - based on actual security concerns
6. COMMON PITFALLS AND HOW TO AVOID THEM
Show ACTUAL pitfalls found in this codebase:
6.1 Framework-specific pitfalls (Entity Framework, React, etc.)
6.2 Async/Await Pitfalls
6.3 Exception Handling Pitfalls
6.4 Additional pitfalls specific to this codebase
7. DEBUGGING AND TROUBLESHOOTING GUIDE
Based on the actual project setup:
7.1 Performance Debugging - specific to this stack
7.2 Database Query Debugging - tools and techniques for this project
7.3 Memory Debugging - specific to this technology stack
8. DEPLOYMENT AND OPERATIONS GUIDE
Based on actual deployment setup:
8.1 Environment-Specific Configuration - actual config structure
8.2 Health Checks Configuration - specific to this application
CRITICAL FORMATTING REQUIREMENTS:
- Format all sections with clear hierarchical headings using <b></b> tags
- Use proper bullet points - each bullet point should be on its own line with <br/> before it
- Format: <b>Heading:</b> followed by bullet points on separate lines
- Example CORRECT format:
<b>Key Indicators:</b><br/>
• First item<br/>
• Second item<br/>
• Third item<br/>
- Example WRONG format:
<b>Key Indicators:</b> - First item - Second item - Third item (all on same line)
- Use <br/><br/> to separate paragraphs
- Each bullet point must be on its own line with proper line breaks
- Use actual examples from the codebase when possible
- Be specific to this project's technology stack
- Focus on REAL issues found in the analysis
- Provide practical, actionable guidance
- Format code examples with &#123; and &#125; for curly braces
- Keep it comprehensive but practical
Generate the complete guide now with PROPER LINE BREAKS and FORMATTING:
"""
# Call AI to generate the guide
print("🤖 [JUNIOR GUIDE] Calling Claude API to generate guide...")
message = self.client.messages.create(
model=os.getenv("CLAUDE_MODEL", "claude-3-5-haiku-latest"),
max_tokens=8000, # Increased from 6000 to 8000 for more detailed guide with code examples
temperature=0.3, # Slightly creative but consistent
messages=[{"role": "user", "content": prompt}]
)
ai_generated_guide = message.content[0].text.strip()
print("✅ AI-generated Junior Developer Guide created successfully")
# Clean up the guide to remove unwanted formatting artifacts
# Remove markdown code blocks that might appear in the output
ai_generated_guide = re.sub(r'```[\w]*\n', '', ai_generated_guide) # Remove ```javascript, ```json etc
ai_generated_guide = re.sub(r'```\s*', '<br/>', ai_generated_guide) # Replace closing ``` with line break
# Handle headings FIRST (before processing bullets)
ai_generated_guide = re.sub(r'^###\s+(.+)$', r'\1', ai_generated_guide, flags=re.MULTILINE)
ai_generated_guide = re.sub(r'^##\s+(.+)$', r'\1', ai_generated_guide, flags=re.MULTILINE)
ai_generated_guide = re.sub(r'^#\s+(.+)$', r'\1', ai_generated_guide, flags=re.MULTILINE)
# Replace newlines with <br/> but preserve structure for bullets
# Process line by line to maintain bullet point integrity
lines = ai_generated_guide.split('\n')
processed_lines = []
for i, line in enumerate(lines):
line = line.strip()
if not line: # Empty line
processed_lines.append('<br/>')
continue
# Check if line is a bullet point
if re.match(r'^[•\-\*]\s*', line):
# It's a bullet point - add <br/> before it (except for first line)
if i > 0:
processed_lines.append('<br/>• ' + line[1:].lstrip())
else:
processed_lines.append('' + line[1:].lstrip())
continue
# Check if line is a numbered list
num_match = re.match(r'^(\d+\.)\s*(.+)', line)
if num_match:
# It's a numbered item - add <br/> before it (except for first line)
if i > 0:
processed_lines.append(f"<br/>{num_match.group(1)} {num_match.group(2)}")
else:
processed_lines.append(f"{num_match.group(1)} {num_match.group(2)}")
continue
# Check if line looks like a heading (not in a code block or bullet)
if line and not line.startswith(' ') and len(line) < 100:
# Might be a heading - wrap in bold
if '<b>' not in line and '</b>' not in line:
line = f"<b>{line}</b>"
# Regular line - add <br/> before it (except for first line)
if i > 0:
processed_lines.append('<br/>' + line)
else:
processed_lines.append(line)
# Join all lines
ai_generated_guide = ''.join(processed_lines)
# Clean up excessive <br/> tags
ai_generated_guide = re.sub(r'(<br/>){4,}', '<br/><br/><br/>', ai_generated_guide)
print("✅ Junior Developer Guide formatting completed with proper line breaks")
return ai_generated_guide
except Exception as e:
print(f"⚠️ AI guide generation failed: {e}, using fallback template")
import traceback
traceback.print_exc()
# Fallback to basic template if AI fails
return self._create_fallback_guide(analysis)
def _create_fallback_guide(self, analysis: RepositoryAnalysis) -> str:
"""Fallback message if AI generation fails - no hardcoded templates."""
languages = analysis.languages or {}
has_react = any(lang.lower() in ['javascript', 'typescript', 'jsx', 'tsx'] for lang in languages.keys())
has_csharp = any(lang.lower() in ['csharp', 'c#'] for lang in languages.keys())
has_python = any(lang.lower() in ['python'] for lang in languages.keys())
return f"""
<b>JUNIOR DEVELOPER IMPLEMENTATION GUIDE</b><br/><br/>
<b>⚠️ AI-Generated Content Unavailable</b><br/><br/>
The AI-powered analysis for this guide was unable to complete. Please refer to the other sections of this report for detailed code analysis and recommendations.<br/><br/>
<b>What to Review:</b><br/>
• Section 10: Code Examples - Problems and Solutions<br/>
• Section 5: Security Vulnerability Assessment<br/>
• Section 6: Performance Analysis<br/>
• Section 8: Files Requiring Immediate Attention<br/><br/>
<b>Technologies Detected in This Project:</b><br/>
{', '.join(languages.keys()) if languages else 'Unknown'}<br/><br/>
<b>Quick Tips Based on Your Stack:</b><br/>
{'• For React/TypeScript projects: Focus on component size, state management, and error boundaries<br/>' if has_react else ''}
{'• For C#/.NET projects: Use dependency injection, async/await patterns, and proper resource disposal<br/>' if has_csharp else ''}
{'• For Python projects: Follow PEP 8 style guide, use virtual environments, and implement proper error handling<br/>' if has_python else ''}
<br/>
This guide is designed to be AI-generated based on your actual codebase. Review the file-by-file analysis above for specific guidance.<br/><br/>
"""
def _generate_key_recommendations(self, analysis: RepositoryAnalysis) -> str:
"""Generate key recommendations summary."""
critical_files = len([fa for fa in analysis.file_analyses if fa.severity_score < 4])
high_priority_files = len([fa for fa in analysis.file_analyses if 4 <= fa.severity_score < 6])
recommendations = f"""
<b>Key Recommendations Summary</b><br/><br/>
<b>Immediate Actions (Next 48 Hours):</b><br/>
1. Fix {critical_files} critical files with quality scores below 4/10<br/>
2. Implement basic security measures and input validation<br/>
3. Set up error monitoring and alerting<br/>
4. Create emergency response procedures<br/><br/>
<b>Short-term Goals (1-2 Weeks):</b><br/>
1. Refactor {high_priority_files} high-priority files<br/>
2. Implement comprehensive testing framework<br/>
3. Add code review processes<br/>
4. Optimize performance bottlenecks<br/><br/>
<b>Long-term Objectives (1-6 Months):</b><br/>
1. Complete architectural refactoring<br/>
2. Achieve 80%+ test coverage<br/>
3. Implement advanced security measures<br/>
4. Optimize for scalability and maintainability<br/>
5. Establish CI/CD best practices<br/><br/>
<b>Success Metrics:</b><br/>
• Reduce average file size to under 300 lines<br/>
• Achieve code quality score above 7/10<br/>
• Implement 80%+ test coverage<br/>
• Reduce bug reports by 50%<br/>
• Improve development velocity by 30%<br/>
"""
return recommendations
def _derive_file_recommendations(self, fa) -> List[Dict[str, Any]]:
"""Create specific recommendations per file based on detected issues and content."""
path_lower = str(getattr(fa, 'path', '')).lower()
content = getattr(fa, 'content', '') or ''
issues = getattr(fa, 'issues_found', []) or []
language = (getattr(fa, 'language', '') or '').lower()
derived: List[Dict[str, Any]] = []
def add(issue_text: str, impact: str, action: str, hours: int) -> None:
derived.append({
'issue': issue_text,
'impact': impact,
'action': action,
'hours': max(1, hours)
})
# Tests
is_test = any(tok in path_lower for tok in ['test', 'spec', '__tests__'])
if is_test:
if fa.lines_of_code <= 5 or not content.strip():
add('Empty or trivial test file', 'No verification of behavior', 'Write Arrange-Act-Assert tests and mock external I/O', 1)
if re.search(r'(it\(|test\()\s*\(("|")[^\)]+("|")\s*,\s*\(\s*\)\s*=>\s*\{\s*\}\s*\)', content):
add('Placeholder tests without assertions', 'False sense of coverage', 'Add assertions for success and error paths', 1)
# Security
if re.search(r'(password|secret|token|apikey|api_key)\s*[:=]\s*("|")[^\"\']+("|")', content, re.I):
add('Hardcoded credentials', 'Secrets exposed via VCS', 'Use env vars or secrets manager; rotate all keys', 2)
if re.search(r'(eval\(|Function\(|exec\()', content):
add('Dynamic code execution', 'Enables code injection', 'Remove eval/exec; replace with safe parsing/whitelisting', 2)
# Performance
if language in ['javascript', 'typescript'] and re.search(r'for\s*\(.*\)\s*\{[\s\S]*?for\s*\(', content):
add('Nested loops detected', 'Potential O(n^2) path', 'Refactor with maps/sets or precomputed indexes', 3)
if language == 'python' and 'pandas' in content and re.search(r'for\s+.*in\s+.*DataFrame', content):
add('Row-wise loops over DataFrame', 'Severe performance hit', 'Vectorize with pandas/numpy operations', 3)
# Reliability
if language in ['javascript', 'typescript'] and re.search(r'await\s+.*\(', content) and 'try' not in content:
add('Missing try/catch around async I/O', 'Unhandled rejections crash flows', 'Wrap awaits with try/catch and add retries', 2)
if language == 'python' and re.search(r'requests\.(get|post|put|delete)\(', content) and 'try' not in content:
add('Network calls without exception handling', 'Crashes on transient failures', 'Add try/except with timeout, retry and logging', 2)
# Maintainability
if fa.lines_of_code and fa.lines_of_code > 300:
add('Large file', 'Hard to comprehend; higher defect rate', 'Split into cohesive modules with single-responsibility', max(2, fa.lines_of_code // 200))
if re.search(r'console\.log\(|print\(', content) and not re.search(r'logger|logging', content, re.I):
add('Debug prints in source', 'Noisy logs and potential data leakage', 'Use structured logger and proper levels', 1)
# Type safety
if language == 'typescript' and re.search(r':\s*any\b', content):
add('Use of any in TypeScript', 'Bypasses type safety', 'Replace any with precise types; enable noImplicitAny', 2)
# Map provided issues to targeted actions
keyword_rules = [
(r'input validation|sanitize|validation', 'Missing input validation', 'Add centralized validation/sanitization for all entry points'),
(r'sql\s*injection|parameterized', 'Potential SQL injection risk', 'Use parameterized queries/ORM; remove concatenated SQL'),
(r'cors|cross[- ]origin', 'Overly permissive CORS', 'Restrict origins/methods/headers; avoid wildcards'),
(r'circular\s*dependency', 'Circular dependency detected', 'Break cycles via interfaces or dependency inversion'),
(r'duplicate|duplicated code', 'Duplicated code', 'Extract shared utilities; apply DRY'),
(r'memory leak', 'Potential memory leak', 'Dispose/close resources; audit caches and listeners'),
]
for issue_text in (issues[:10] if isinstance(issues, (list, tuple)) else []):
low = str(issue_text).lower()
matched = False
for pattern, impact, action in keyword_rules:
if re.search(pattern, low):
add(issue_text, impact, action, 2)
matched = True
break
if not matched and low:
add(issue_text, 'Affects maintainability/correctness', 'Implement a focused fix aligned with this issue', 2)
# De-duplicate
unique: List[Dict[str, Any]] = []
seen = set()
for rec in derived:
key = (rec['issue'], rec['action'])
if key in seen:
continue
seen.add(key)
unique.append(rec)
limit = 5 if getattr(fa, 'severity_score', 5.0) < 5 else 3
return unique[:limit]
async def query_memory(self, query: str, repo_context: str = "") -> Dict[str, Any]:
"""Query the memory system directly."""
return await self.query_engine.intelligent_query(query, repo_context)
# ========== AI-Generated Analysis Methods for Missing Sections ==========
async def _analyze_smoking_gun_evidence(self, analysis: RepositoryAnalysis) -> Dict[str, Any]:
"""AI-powered analysis to find exact problematic code blocks (100-500 lines)."""
try:
print("🔍 Analyzing smoking gun evidence - finding exact problematic code...")
# Collect large problematic files
problematic_files = [fa for fa in analysis.file_analyses if fa.severity_score < 6][:5]
if not problematic_files:
return {'smoking_guns': [], 'summary': 'No smoking gun evidence found'}
# Build AI prompt with actual code content
code_samples = []
for i, fa in enumerate(problematic_files, 1):
content = getattr(fa, 'content', '') or ''
if len(content) > 10000: # For very large files, extract more context
content_lines = content.split('\n')
# Take first 200 lines
content = '\n'.join(content_lines[:200])
code_samples.append(f"""
### File {i}: {fa.path} ({fa.lines_of_code} lines, Quality: {fa.severity_score:.1f}/10)
Issues Found: {', '.join(str(issue) for issue in fa.issues_found[:5])}
Code Content:
{content[:5000]}
""")
prompt = f"""You are a Senior Code Reviewer. Analyze these problematic files and identify the EXACT smoking gun evidence.
{chr(10).join(code_samples)}
For each file, provide:
1. **The EXACT line of code** causing the disaster (quote it precisely)
2. **Full problematic code blocks** (100-200 lines showing the anti-pattern)
3. **Visual proof** with code annotations showing WHY it's wrong
4. **Root cause analysis** explaining how this pattern breaks the system
5. **Scale of disaster** (how many times this pattern appears in the codebase)
Focus on actual code patterns, not vague suggestions. Provide complete working code snippets showing the disaster pattern.
Format your response as structured text with clear sections."""
message = self.client.messages.create(
model=os.getenv("CLAUDE_MODEL", "claude-3-5-haiku-latest"),
max_tokens=8000,
temperature=0.1,
messages=[{"role": "user", "content": prompt}]
)
ai_analysis = message.content[0].text.strip()
print("✅ Smoking gun evidence analysis complete")
return {
'smoking_guns': problematic_files,
'ai_analysis': ai_analysis,
'summary': f'Found {len(problematic_files)} files with smoking gun evidence'
}
except Exception as e:
print(f"⚠️ Smoking gun analysis failed: {e}")
return {'smoking_guns': [], 'summary': f'Analysis failed: {str(e)}'}
async def _analyze_real_fixes(self, analysis: RepositoryAnalysis) -> Dict[str, Any]:
"""AI-powered analysis providing complete Before/After code transformations."""
try:
print("🔍 Generating real implementation fixes with complete code...")
problematic_files = [fa for fa in analysis.file_analyses if fa.severity_score < 6][:3]
if not problematic_files:
return {'fixes': [], 'summary': 'No files requiring fixes'}
code_samples = []
for fa in problematic_files:
content = getattr(fa, 'content', '') or ''
if len(content) > 5000:
content_lines = content.split('\n')
content = '\n'.join(content_lines[:150]) # First 150 lines
code_samples.append(f"""
File: {fa.path}
Lines: {fa.lines_of_code}
Quality Score: {fa.severity_score:.1f}/10
Issues: {', '.join(str(issue) for issue in fa.issues_found[:5])}
Current Code:
{content[:3000]}
""")
prompt = f"""You are a Senior Refactoring Expert. Provide COMPLETE working code replacements, not suggestions.
{chr(10).join(code_samples)}
For each file, provide:
**COMPLETE BEFORE/AFTER TRANSFORMATION:**
1. **BEFORE Code** (identify the exact problematic section)
2. **AFTER Code** (complete working implementation)
3. **Step-by-step transformation guide**
4. **Exact code to copy-paste**
Requirements:
- Provide FULL working code, not pseudo-code
- Show complete function/class replacement
- Include all imports and dependencies
- Ensure the after code is production-ready
- Explain each major change with inline comments
- Test the logic is equivalent but better
Format your response with clear BEFORE/AFTER sections and copy-paste ready code."""
message = self.client.messages.create(
model=os.getenv("CLAUDE_MODEL", "claude-3-5-haiku-latest"),
max_tokens=8000,
temperature=0.2,
messages=[{"role": "user", "content": prompt}]
)
ai_fixes = message.content[0].text.strip()
print("✅ Real fixes analysis complete")
return {
'fixes': problematic_files,
'ai_fixes': ai_fixes,
'summary': f'Generated complete fixes for {len(problematic_files)} files'
}
except Exception as e:
print(f"⚠️ Real fixes analysis failed: {e}")
return {'fixes': [], 'summary': f'Analysis failed: {str(e)}'}
def _analyze_orm_configuration(self, analysis: RepositoryAnalysis) -> Dict[str, Any]:
"""Analyze ORM/database configuration dynamically based on detected technology stack."""
try:
# Detect technology stack first
tech_stack = self._detect_technology_stack(analysis)
orm_name = tech_stack['orm_name']
is_csharp = tech_stack['is_csharp']
is_nodejs = tech_stack['is_nodejs']
is_java = tech_stack['is_java']
is_python = tech_stack['is_python']
# If no ORM detected, return empty analysis
if orm_name == 'Unknown':
return {
'has_orm': False,
'orm_name': 'None detected',
'config_files': 0,
'total_relationships': 0,
'summary': 'No ORM/database configuration files detected in codebase'
}
config_files = []
total_relationships = 0
optional_relationships = 0
required_relationships = 0
schema_files = []
# Technology-specific file detection and analysis
for fa in analysis.file_analyses:
file_path = str(fa.path).lower()
content = getattr(fa, 'content', '') or ''
# Entity Framework Core (C#)
if is_csharp and orm_name == 'Entity Framework Core':
if 'dbcontext' in file_path or 'onmodelcreating' in content.lower():
config_files.append(fa)
schema_files.append(fa.path)
# Count EF-specific relationships
total_relationships += content.count('HasOptional') + content.count('HasRequired') + \
content.count('WithMany') + content.count('WithOne')
optional_relationships += content.count('HasOptional')
required_relationships += content.count('HasRequired')
# Mongoose ODM (Node.js)
elif is_nodejs and orm_name == 'Mongoose':
if 'model' in file_path and '.js' in file_path or 'schema' in content.lower():
config_files.append(fa)
schema_files.append(fa.path)
# Count Mongoose relationships
total_relationships += content.count('type: Schema.Types.ObjectId') + \
content.count('ref:')
# Mongoose uses ref for relationships
relationship_refs = content.count('ref:')
required_relationships += relationship_refs # All refs are typically required
# Hibernate/JPA (Java)
elif is_java and 'Hibernate' in orm_name:
if '@entity' in content.lower() or '@table' in content.lower():
config_files.append(fa)
schema_files.append(fa.path)
# Count JPA relationships
total_relationships += content.count('@OneToMany') + content.count('@OneToOne') + \
content.count('@ManyToMany') + content.count('@ManyToOne')
optional_relationships += content.count('optional=true')
required_relationships += content.count('optional=false')
# Django ORM (Python)
elif is_python and 'Django' in orm_name:
if 'models.py' in file_path or 'models.Model' in content:
config_files.append(fa)
schema_files.append(fa.path)
# Count Django relationships
total_relationships += content.count('ForeignKey') + content.count('OneToOneField') + \
content.count('ManyToManyField')
required_relationships += content.count('blank=False')
optional_relationships += content.count('blank=True')
# SQLAlchemy (Python)
elif is_python and 'SQLAlchemy' in orm_name:
if 'relationship(' in content.lower() or 'Column(' in content.lower():
config_files.append(fa)
schema_files.append(fa.path)
# Count SQLAlchemy relationships
total_relationships += content.count('relationship(')
required_relationships += content.count('nullable=False')
optional_relationships += content.count('nullable=True')
# Calculate percentages
optional_percent = (optional_relationships / total_relationships * 100) if total_relationships > 0 else 0
required_percent = 100 - optional_percent
return {
'has_orm': True,
'orm_name': orm_name,
'config_files': len(config_files),
'total_relationships': total_relationships,
'optional_relationships': optional_relationships,
'optional_percent': optional_percent,
'required_relationships': required_relationships if required_relationships > 0 else (total_relationships - optional_relationships),
'required_percent': required_percent,
'sample_files': schema_files[:5]
}
except Exception as e:
print(f"⚠️ ORM configuration analysis failed: {e}")
return {
'has_orm': False,
'orm_name': 'Unknown',
'config_files': 0,
'total_relationships': 0,
'optional_relationships': 0,
'optional_percent': 0,
'required_relationships': 0,
'required_percent': 0,
'sample_files': []
}
def _analyze_nplusone_sync(self, analysis: RepositoryAnalysis) -> Dict[str, Any]:
"""Synchronous wrapper for N+1 query analysis."""
query_files = [fa for fa in analysis.file_analyses if any(indicator in fa.path.lower() for indicator in ['repository', 'service', 'controller', 'dal', 'dao'])]
return {'nplusone_count': len(query_files), 'impact': 'High' if len(query_files) > 3 else 'Medium'}
def _analyze_scalability_metrics(self, analysis: RepositoryAnalysis, max_concurrent: int, conn_per_req: int, pool_size: int, memory_per_req: float, proc_time: float) -> Dict[str, Any]:
"""Analyze scalability metrics and performance gaps."""
current_rpm = max(max_concurrent, 1) # At least 1 to avoid division by zero
required_rpm = 15000
gap_multiplier = required_rpm / current_rpm if current_rpm > 0 else float('inf')
rpm_gap = max(0, required_rpm - current_rpm)
required_pool_size = required_rpm * 2 / 60
conclusion = "IMPOSSIBLE with current architecture" if gap_multiplier > 100 else "REQUIRES MAJOR REdESIGN"
return {
'current_rpm': current_rpm,
'required_rpm': required_rpm,
'gap_multiplier': gap_multiplier,
'rpm_gap': rpm_gap,
'required_pool_size': required_pool_size,
'conclusion': conclusion
}
def _analyze_testing_infrastructure_deep(self, analysis: RepositoryAnalysis) -> Dict[str, Any]:
"""Deep dive into testing infrastructure."""
test_files = [fa for fa in analysis.file_analyses if 'test' in str(fa.path).lower() or 'spec' in str(fa.path).lower()]
backend_tests = [fa for fa in test_files if any(ext in str(fa.path).lower() for ext in ['.cs', '.java', '.py', '.go', '.rs'])]
frontend_tests = [fa for fa in test_files if any(ext in str(fa.path).lower() for ext in ['.js', '.ts', '.jsx', '.tsx'])]
empty_tests = [fa for fa in test_files if fa.lines_of_code == 0]
# Use existing method for detailed breakdown
test_analysis = self._analyze_testing_infrastructure(analysis)
return {
'backend_tests': len(backend_tests),
'frontend_tests': len(frontend_tests),
'empty_tests': len(empty_tests),
'overall_coverage': test_analysis['overall_coverage'],
'unit_tests': test_analysis.get('integration_tests', '0'),
'integration_tests': test_analysis['integration_tests'],
'e2e_tests': test_analysis['e2e_tests'],
'security_tests': test_analysis['security_tests'],
'performance_tests': test_analysis['performance_tests'],
'test_quality_score': test_analysis['test_quality_score'],
'critical_issues': test_analysis['critical_issues'],
'recommendations': test_analysis['recommendations']
}
def _analyze_frontend_monoliths(self, analysis: RepositoryAnalysis) -> Dict[str, Any]:
"""Analyze frontend monolith files in detail."""
frontend_files = [fa for fa in analysis.file_analyses if any(ext in str(fa.path).lower() for ext in ['.js', '.jsx', '.ts', '.tsx'])]
large_files = sorted(frontend_files, key=lambda x: x.lines_of_code, reverse=True)[:10]
largest_files = [{'name': fa.path.split('/')[-1], 'lines': fa.lines_of_code} for fa in large_files]
total_monolith_lines = sum(fa.lines_of_code for fa in large_files)
avg_monolith_size = sum(fa.lines_of_code for fa in large_files) / len(large_files) if large_files else 0
large_files_count = len([fa for fa in frontend_files if fa.lines_of_code > 300])
monolith_percentage = (total_monolith_lines / sum(fa.lines_of_code for fa in frontend_files) * 100) if frontend_files else 0
return {
'largest_files': largest_files,
'total_monolith_lines': total_monolith_lines,
'avg_monolith_size': avg_monolith_size,
'large_files_count': large_files_count,
'monolith_percentage': monolith_percentage
}
def _create_timeline_roadmap(self, analysis: RepositoryAnalysis, critical_count: int, high_priority_count: int) -> str:
"""Create detailed fix roadmap with timeline."""
roadmap = f"""
<b>Phase 1: Emergency Response (Days 1-2) - {critical_count} Critical Files</b><br/>
• Fix {critical_count} critical files (severity score < 4)<br/>
• Estimated Time: {critical_count * 8} hours<br/>
• Team Required: 2-3 senior developers<br/>
• Priority: URGENT - System stability at risk<br/><br/>
<b>Phase 2: Foundation Stabilization (Weeks 1-2) - {high_priority_count} High Priority Files</b><br/>
• Refactor {high_priority_count} high-priority files (severity 4-6)<br/>
• Estimated Time: {high_priority_count * 16} hours<br/>
• Team Required: Full development team<br/>
• Priority: HIGH - Performance and maintainability<br/><br/>
<b>Phase 3: Architectural Redesign (Months 1-2)</b><br/>
• Implement proper connection pooling<br/>
• Refactor repository factory pattern<br/>
• Optimize database queries (N+1 fixes)<br/>
• Split monolith files into modules<br/>
• Estimated Time: 320-640 hours<br/>
• Deliverables: Scalable architecture, performance benchmarks<br/><br/>
<b>Phase 4: Enterprise Hardening (Months 3-6)</b><br/>
• Comprehensive testing suite (80%+ coverage)<br/>
• CI/CD pipeline optimization<br/>
• Monitoring and observability<br/>
• Security hardening<br/>
• Estimated Time: 400-800 hours<br/>
• Deliverables: Production-ready enterprise system<br/>
"""
return roadmap
def _analyze_expected_outcomes(self, analysis: RepositoryAnalysis, max_concurrent: int, memory_per_req: float, proc_time: float) -> Dict[str, Any]:
"""Analyze expected outcomes after redesign."""
return {
'business_benefits': [
'Support 500+ concurrent users without performance degradation',
'Reduce response times from 5-30s to <2s',
'Cut infrastructure costs by 70%+ through optimization',
'Improve development velocity by 40%+ with better architecture',
'Reduce bug density by 60%+ with comprehensive testing',
'Enable rapid feature development with scalable foundation'
],
'velocity_improvement': '40',
'cost_reduction': '70',
'maintenance_reduction': '60'
}
def _analyze_devops_infrastructure(self, analysis: RepositoryAnalysis) -> Dict[str, Any]:
"""Analyze DevOps and infrastructure setup."""
cicd_files = [fa for fa in analysis.file_analyses if any(indicator in str(fa.path).lower() for indicator in ['ci', 'jenkins', 'gitlab', 'github-actions', 'azure-pipelines', 'circleci'])]
docker_files = [fa for fa in analysis.file_analyses if 'dockerfile' in str(fa.path).lower()]
health_check_files = [fa for fa in analysis.file_analyses if 'health' in str(fa.path).lower()]
monitoring_files = [fa for fa in analysis.file_analyses if any(indicator in str(fa.path).lower() for indicator in ['monitor', 'prometheus', 'grafana', 'datadog'])]
security_files = [fa for fa in analysis.file_analyses if 'security' in str(fa.path).lower()]
deployment_files = [fa for fa in analysis.file_analyses if any(indicator in str(fa.path).lower() for indicator in ['deploy', 'k8s', 'kubernetes', 'helm'])]
recommendations = [
'Implement comprehensive CI/CD pipeline with automated testing',
'Add container orchestration (Docker/Kubernetes) if not present',
'Set up health check endpoints for monitoring',
'Configure APM tools for production monitoring',
'Implement infrastructure as code (IaC)',
'Set up automated security scanning in pipeline'
]
return {
'cicd_files': len(cicd_files),
'docker_files': len(docker_files),
'health_check_files': len(health_check_files),
'monitoring_files': len(monitoring_files),
'security_files': len(security_files),
'deployment_files': len(deployment_files),
'recommendations': recommendations
}
def _analyze_bulk_upload_sync(self, analysis: RepositoryAnalysis) -> Dict[str, Any]:
"""Synchronous wrapper for bulk upload analysis."""
upload_files = [fa for fa in analysis.file_analyses if any(indicator in fa.path.lower() for indicator in ['upload', 'import', 'bulk', 'excel'])]
upload_classes = len(upload_files)
total_properties = 0
for fa in upload_files:
content = getattr(fa, 'content', '') or ''
total_properties += content.count('public ') + content.count('private ') + content.count('protected ')
return {'upload_classes': upload_classes, 'total_properties': total_properties}
def _analyze_performance_per_layer_sync(self, analysis: RepositoryAnalysis) -> Dict[str, Any]:
"""Synchronous wrapper for performance per layer analysis."""
frontend_files = [fa for fa in analysis.file_analyses if any(ext in fa.path.lower() for ext in ['.js', '.jsx', '.ts', '.tsx'])]
total_frontend_lines = sum(fa.lines_of_code for fa in frontend_files)
bundle_size_mb = (total_frontend_lines * 0.5) / 1000
return {
'controller_overhead': '50-100ms',
'service_processing': '100-200ms',
'database_queries': '200-500ms',
'frontend_bundle': f'{bundle_size_mb:.1f}MB',
'total_frontend_lines': total_frontend_lines
}
def _analyze_repository_pattern(self, analysis: RepositoryAnalysis) -> Dict[str, Any]:
"""Analyze repository/data access pattern technology-aware."""
try:
# Detect technology stack
tech_stack = self._detect_technology_stack(analysis)
is_csharp = tech_stack['is_csharp']
is_nodejs = tech_stack['is_nodejs']
is_java = tech_stack['is_java']
is_python = tech_stack['is_python']
# Technology-specific repository detection
repo_files = []
factory_files = []
uow_files = []
pattern_name = "Data Access Layer"
for fa in analysis.file_analyses:
file_path = str(fa.path).lower()
content = getattr(fa, 'content', '') or ''
# C# specific patterns
if is_csharp:
if 'repository' in file_path or 'repository' in content.lower():
repo_files.append(fa)
if 'factory' in file_path or 'factory' in content.lower():
factory_files.append(fa)
if 'unitofwork' in file_path or 'unitofwork' in content.lower():
uow_files.append(fa)
pattern_name = "Repository + UnitOfWork Pattern (.NET)"
# Node.js patterns
elif is_nodejs:
if 'repository' in file_path or 'model' in file_path:
repo_files.append(fa)
if 'factory' in file_path:
factory_files.append(fa)
# Java patterns
elif is_java:
if 'repository' in file_path or '@repository' in content.lower():
repo_files.append(fa)
if 'factory' in file_path:
factory_files.append(fa)
pattern_name = "Repository + Factory Pattern (Spring)"
# Python patterns
elif is_python:
if 'repository' in file_path or 'dal' in file_path or 'dao' in file_path:
repo_files.append(fa)
if 'factory' in file_path:
factory_files.append(fa)
pattern_name = "Data Access Layer (Python)"
# Only analyze if repositories are found
if not repo_files:
return {
'has_repos': False,
'pattern': 'None detected',
'total_repositories': 0,
'repositories_per_request': 0,
'avg_repo_size': 0,
'factory_files': 0,
'uow_files': 0,
'sample_repositories': []
}
# Calculate metrics
total_repositories = len(repo_files)
avg_repo_size = sum(fa.lines_of_code for fa in repo_files) / len(repo_files) if repo_files else 0
# Estimate repositories per request
repositories_per_request = 0
if uow_files:
for fa in uow_files:
content = getattr(fa, 'content', '') or ''
# Count repository instantiations
repositories_per_request = max(repositories_per_request,
content.count('= new ') + content.count('new I') +
content.count('new ') + content.count('Create'))
# Default estimate if not calculated
if repositories_per_request == 0:
repositories_per_request = max(1, min(total_repositories, 5))
return {
'has_repos': True,
'pattern': pattern_name,
'total_repositories': total_repositories,
'repositories_per_request': repositories_per_request,
'avg_repo_size': avg_repo_size,
'factory_files': len(factory_files),
'uow_files': len(uow_files),
'sample_repositories': [fa.path for fa in repo_files[:5]]
}
except Exception as e:
print(f"⚠️ Repository pattern analysis failed: {e}")
return {
'has_repos': False,
'pattern': 'None detected',
'total_repositories': 0,
'repositories_per_request': 0,
'avg_repo_size': 0,
'factory_files': 0,
'uow_files': 0,
'sample_repositories': []
}
async def _analyze_nplusone_queries(self, analysis: RepositoryAnalysis) -> Dict[str, Any]:
"""AI-powered N+1 query analysis."""
try:
print("🔍 Analyzing N+1 query patterns...")
query_files = [fa for fa in analysis.file_analyses if any(indicator in fa.path.lower() for indicator in ['repository', 'service', 'controller', 'dal', 'dao'])]
if not query_files:
return {'nplusone_count': 0, 'examples': [], 'impact': 'Low'}
# Build code samples for AI analysis
code_samples = []
for fa in query_files[:5]:
content = getattr(fa, 'content', '') or ''
if len(content) > 5000:
content_lines = content.split('\n')
content = '\n'.join(content_lines[:200])
code_samples.append(f"""
File: {fa.path}
Lines: {fa.lines_of_code}
Code:
{content[:3000]}
""")
prompt = f"""You are a Database Performance Expert. Analyze this code for N+1 query patterns.
{chr(10).join(code_samples)}
For each file, identify:
1. **Specific N+1 query examples** (quote the exact code)
2. **Query count calculations** (show 1 + N×M pattern)
3. **Database load impact** (estimated query count per request)
4. **Before/After optimization** (complete optimized code)
Format with exact code examples showing:
- BEFORE: The N+1 pattern with query count math
- AFTER: Optimized version with reduced queries
Be specific with query counts and provide working optimized code."""
message = self.client.messages.create(
model=os.getenv("CLAUDE_MODEL", "claude-3-5-haiku-latest"),
max_tokens=6000,
temperature=0.1,
messages=[{"role": "user", "content": prompt}]
)
ai_analysis = message.content[0].text.strip()
print("✅ N+1 query analysis complete")
return {
'nplusone_count': len(query_files),
'ai_analysis': ai_analysis,
'impact': 'High' if len(query_files) > 3 else 'Medium'
}
except Exception as e:
print(f"⚠️ N+1 query analysis failed: {e}")
return {'nplusone_count': 0, 'examples': [], 'impact': 'Low'}
def _analyze_controller_endpoints(self, analysis: RepositoryAnalysis) -> Dict[str, Any]:
"""Analyze API controller endpoints for explosion and dual patterns."""
try:
controller_files = [fa for fa in analysis.file_analyses if 'controller' in fa.path.lower() or 'api' in fa.path.lower()]
endpoint_counts = {}
largest_controller = None
largest_endpoint_count = 0
for fa in controller_files:
content = getattr(fa, 'content', '') or ''
if not content:
continue
# Count endpoints
endpoint_count = content.count('@HttpGet') + content.count('@HttpPost') + \
content.count('@HttpPut') + content.count('@HttpDelete') + \
content.count('@RequestMapping') + content.count('@GetMapping') + \
content.count('@PostMapping') + content.count('@PutMapping') + \
content.count('@DeleteMapping')
endpoint_counts[fa.path] = endpoint_count
if endpoint_count > largest_endpoint_count:
largest_endpoint_count = endpoint_count
largest_controller = fa
total_endpoints = sum(endpoint_counts.values())
avg_endpoints_per_controller = total_endpoints / len(controller_files) if controller_files else 0
# Check for dual controller patterns
dual_controllers = [fa.path for fa in controller_files if 'dual' in fa.path.lower() or 'double' in fa.path.lower()]
return {
'total_controllers': len(controller_files),
'total_endpoints': total_endpoints,
'avg_endpoints': avg_endpoints_per_controller,
'largest_controller': largest_controller.path if largest_controller else 'None',
'largest_endpoint_count': largest_endpoint_count,
'dual_controllers': len(dual_controllers),
'sample_endpoint_counts': {k: v for k, v in list(endpoint_counts.items())[:5]}
}
except Exception as e:
print(f"⚠️ Controller endpoints analysis failed: {e}")
return {
'total_controllers': 0,
'total_endpoints': 0,
'avg_endpoints': 0,
'largest_controller': 'None',
'largest_endpoint_count': 0,
'dual_controllers': 0,
'sample_endpoint_counts': {}
}
async def _analyze_bulk_upload_system(self, analysis: RepositoryAnalysis) -> Dict[str, Any]:
"""AI-powered analysis of bulk upload system issues."""
try:
print("🔍 Analyzing bulk upload system...")
upload_files = [fa for fa in analysis.file_analyses if any(indicator in fa.path.lower() for indicator in ['upload', 'import', 'bulk', 'excel'])]
if not upload_files:
return {'upload_classes': 0, 'total_properties': 0, 'issues': []}
code_samples = []
for fa in upload_files[:3]:
content = getattr(fa, 'content', '') or ''
if len(content) > 5000:
content_lines = content.split('\n')
content = '\n'.join(content_lines[:200])
code_samples.append(f"""
File: {fa.path}
Lines: {fa.lines_of_code}
Code:
{content[:3000]}
""")
prompt = f"""You are a System Architecture Expert. Analyze this bulk upload system.
{chr(10).join(code_samples)}
Identify:
1. **Upload class count** (how many upload classes)
2. **Total properties** across all upload classes
3. **Type safety problems** (string vs proper types)
4. **Excel template complexity**
5. **Upload failure root causes**
6. **Specific code examples** of problems
Provide detailed analysis with exact code examples showing the issues."""
message = self.client.messages.create(
model=os.getenv("CLAUDE_MODEL", "claude-3-5-haiku-latest"),
max_tokens=6000,
temperature=0.1,
messages=[{"role": "user", "content": prompt}]
)
ai_analysis = message.content[0].text.strip()
print("✅ Bulk upload system analysis complete")
# Count upload classes and properties
upload_classes = len(upload_files)
total_properties = 0
for fa in upload_files:
content = getattr(fa, 'content', '') or ''
total_properties += content.count('public ') + content.count('private ') + content.count('protected ')
return {
'upload_classes': upload_classes,
'total_properties': total_properties,
'ai_analysis': ai_analysis,
'sample_files': [fa.path for fa in upload_files[:5]]
}
except Exception as e:
print(f"⚠️ Bulk upload analysis failed: {e}")
return {'upload_classes': 0, 'total_properties': 0, 'issues': []}
def _analyze_background_processing(self, analysis: RepositoryAnalysis) -> Dict[str, Any]:
"""Analyze background processing and threading issues."""
try:
thread_files = [fa for fa in analysis.file_analyses if any(indicator in fa.path.lower() for indicator in ['thread', 'background', 'scheduler', 'async', 'task'])]
email_files = [fa for fa in analysis.file_analyses if 'email' in fa.path.lower() or 'mail' in fa.path.lower()]
manual_thread_count = 0
threadpool_usage = False
for fa in thread_files:
content = getattr(fa, 'content', '') or ''
# Count manual thread creation
manual_thread_count += content.count('new Thread(') + content.count('Thread thread =')
# Check for thread pool usage
if any(pool in content for pool in ['ThreadPool', 'Task.Run', 'async Task', '@Async']):
threadpool_usage = True
# Check for email system
email_implementation = 'Basic' if email_files else 'None'
return {
'manual_thread_count': manual_thread_count,
'threadpool_usage': threadpool_usage,
'thread_files': len(thread_files),
'email_implementation': email_implementation,
'email_files': len(email_files),
'sample_files': [fa.path for fa in thread_files[:5]]
}
except Exception as e:
print(f"⚠️ Background processing analysis failed: {e}")
return {
'manual_thread_count': 0,
'threadpool_usage': False,
'thread_files': 0,
'email_implementation': 'None',
'email_files': 0,
'sample_files': []
}
async def _analyze_performance_per_layer(self, analysis: RepositoryAnalysis) -> Dict[str, Any]:
"""AI-powered performance analysis per layer."""
try:
print("🔍 Analyzing performance impact per layer...")
# Categorize files by layer
controller_files = [fa for fa in analysis.file_analyses if 'controller' in fa.path.lower()]
service_files = [fa for fa in analysis.file_analyses if 'service' in fa.path.lower()]
repository_files = [fa for fa in analysis.file_analyses if 'repository' in fa.path.lower()]
frontend_files = [fa for fa in analysis.file_analyses if any(ext in fa.path.lower() for ext in ['.js', '.jsx', '.ts', '.tsx'])]
# Build code samples from each layer
samples = []
if controller_files:
for fa in controller_files[:2]:
content = getattr(fa, 'content', '') or ''
if len(content) > 3000:
content = content[:3000]
samples.append(f"[Controller] {fa.path}\n{content}")
if service_files:
for fa in service_files[:2]:
content = getattr(fa, 'content', '') or ''
if len(content) > 3000:
content = content[:3000]
samples.append(f"[Service] {fa.path}\n{content}")
if repository_files:
for fa in repository_files[:2]:
content = getattr(fa, 'content', '') or ''
if len(content) > 3000:
content = content[:3000]
samples.append(f"[Repository] {fa.path}\n{content}")
if not samples:
return {'timings': {}, 'summary': 'No performance analysis possible'}
prompt = f"""You are a Performance Expert. Analyze this code for end-to-end request lifecycle timing.
{chr(10).join(samples[:10])}
For each layer, provide:
1. **Request lifecycle timing** breakdown
2. **Database operation timing**
3. **Service layer timing**
4. **Controller overhead timing**
5. **Frontend bundle size impact**
6. **Complete request time breakdown**
Provide specific timing estimates with calculations showing where time is spent in each layer."""
message = self.client.messages.create(
model=os.getenv("CLAUDE_MODEL", "claude-3-5-haiku-latest"),
max_tokens=6000,
temperature=0.1,
messages=[{"role": "user", "content": prompt}]
)
ai_analysis = message.content[0].text.strip()
print("✅ Performance per layer analysis complete")
# Calculate bundle size estimate
total_frontend_lines = sum(fa.lines_of_code for fa in frontend_files)
bundle_size_mb = (total_frontend_lines * 0.5) / 1000
return {
'timings': {
'controller_overhead': '50-100ms',
'service_processing': '100-200ms',
'database_queries': '200-500ms',
'frontend_bundle': f'{bundle_size_mb:.1f}MB'
},
'ai_analysis': ai_analysis,
'total_frontend_lines': total_frontend_lines
}
except Exception as e:
print(f"⚠️ Performance per layer analysis failed: {e}")
return {'timings': {}, 'summary': 'Analysis failed'}
# ========== Formatting Utilities ==========
def _format_bulleted_html(self, text: str) -> str:
"""Normalize bullets/line breaks so each bullet shows on its own line in PDF.
Converts newlines before bullets to <br/> bullets and compacts paragraph breaks.
"""
if not text:
return text
t = text.strip()
# Paragraph breaks
t = re.sub(r"\n\n+", "<br/><br/>", t)
# Bullets using •, -, *
t = re.sub(r"\n\s*[•\-\*]\s*", "<br/>• ", t)
# Ensure there is a break after headings like </b>:
t = re.sub(r"</b>\s*", "</b><br/>", t)
return t
def get_memory_config() -> Dict[str, Any]:
"""Get memory system configuration from environment variables."""
return {
'anthropic_api_key': os.getenv('ANTHROPIC_API_KEY', ''),
'redis_host': os.getenv('REDIS_HOST', 'localhost'),
'redis_port': int(os.getenv('REDIS_PORT', 6379)),
'redis_db': int(os.getenv('REDIS_DB', 0)),
'mongodb_url': os.getenv('MONGODB_URL', 'mongodb://localhost:27017/'),
'mongodb_name': os.getenv('MONGODB_DB', 'repo_analyzer'),
'postgres_host': os.getenv('POSTGRES_HOST', 'localhost'),
'postgres_port': int(os.getenv('POSTGRES_PORT', 5432)),
'postgres_db': os.getenv('POSTGRES_DB', 'repo_vectors'),
'postgres_user': os.getenv('POSTGRES_USER', 'postgres'),
'postgres_password': os.getenv('POSTGRES_PASSWORD', '')
}
async def main():
"""Main function to run the enhanced repository analyzer."""
load_dotenv()
import argparse
parser = argparse.ArgumentParser(description="Complete AI Repository Analysis - Analyzes ALL files automatically")
parser.add_argument("repo_path", help="Repository path (local directory or Git URL)")
parser.add_argument("--output", "-o", default="complete_repository_analysis.pdf",
help="Output PDF file path")
parser.add_argument("--api-key", help="Anthropic API key (overrides .env)")
args = parser.parse_args()
# Get API key
api_key = args.api_key or os.getenv('ANTHROPIC_API_KEY')
if not api_key:
print("❌ Error: ANTHROPIC_API_KEY not found in .env file or command line")
return 1
try:
print("🚀 Starting Complete AI Repository Analysis")
print("=" * 60)
print(f"Repository: {args.repo_path}")
print(f"Output: {args.output}")
print("Mode: Complete automated analysis of ALL files")
print("=" * 60)
# Initialize enhanced analyzer
config = get_memory_config()
analyzer = EnhancedGitHubAnalyzer(api_key, config)
# Perform complete analysis
analysis = await analyzer.analyze_repository_with_memory(args.repo_path)
# Generate PDF report
analyzer.create_pdf_report(analysis, args.output)
# Print summary to console
print("\n" + "=" * 60)
print("🎯 COMPLETE ANALYSIS FINISHED")
print("=" * 60)
print(f"📊 Repository Statistics:")
print(f" • Files Analyzed: {analysis.total_files}")
print(f" • Lines of Code: {analysis.total_lines:,}")
print(f" • Languages: {len(analysis.languages)}")
print(f" • Code Quality: {analysis.code_quality_score:.1f}/10")
# Quality breakdown
high_quality = len([fa for fa in analysis.file_analyses if fa.severity_score >= 8])
medium_quality = len([fa for fa in analysis.file_analyses if 5 <= fa.severity_score < 8])
low_quality = len([fa for fa in analysis.file_analyses if fa.severity_score < 5])
print(f"\n📈 Quality Breakdown:")
print(f" • High Quality Files (8-10): {high_quality}")
print(f" • Medium Quality Files (5-7): {medium_quality}")
print(f" • Low Quality Files (1-4): {low_quality}")
print(f" • Total Issues Found: {sum(len(fa.issues_found) if isinstance(fa.issues_found, (list, tuple)) else 0 for fa in analysis.file_analyses)}")
# Language breakdown
print(f"\n🔤 Language Distribution:")
for lang, count in sorted(analysis.languages.items(), key=lambda x: x[1], reverse=True)[:10]:
print(f"{lang}: {count} files")
# Memory system stats
memory_stats = await analyzer.memory_manager.get_memory_stats()
print(f"\n🧠 Memory System Statistics:")
for category, data in memory_stats.items():
print(f"{category.replace('_', ' ').title()}: {data}")
print(f"\n📄 Complete PDF Report: {args.output}")
print("\n✅ Complete analysis finished successfully!")
return 0
except Exception as e:
print(f"❌ Error during analysis: {e}")
import traceback
traceback.print_exc()
return 1
def _analyze_architecture_patterns(self, analysis: RepositoryAnalysis) -> dict:
"""Analyze actual architectural patterns from the codebase."""
# Detect project type based on file structure and patterns
project_type = "Unknown"
project_evidence = "No clear architectural pattern detected"
# Look for microservice indicators
microservice_indicators = 0
monolithic_indicators = 0
# Check for common microservice patterns
for file_analysis in analysis.file_analyses:
file_path = file_analysis.path.lower()
file_content = getattr(file_analysis, 'content', '') or ''
# Microservice indicators
if any(indicator in file_path for indicator in ['docker', 'kubernetes', 'helm', 'service-mesh']):
microservice_indicators += 1
if any(indicator in file_content for indicator in ['@EnableEurekaClient', '@EnableDiscoveryClient', 'consul', 'etcd']):
microservice_indicators += 1
if any(indicator in file_path for indicator in ['api-gateway', 'service-discovery', 'config-server']):
microservice_indicators += 1
# Monolithic indicators
if any(indicator in file_path for indicator in ['monolith', 'single-app', 'main-application']):
monolithic_indicators += 1
if any(indicator in file_content for indicator in ['@SpringBootApplication', 'main()', 'Application.run']):
monolithic_indicators += 1
if file_analysis.lines_of_code > 1000: # Large files suggest monolith
monolithic_indicators += 1
# Determine project type
if microservice_indicators > monolithic_indicators:
project_type = "Microservices Architecture"
project_evidence = f"Found {microservice_indicators} microservice indicators (Docker, service discovery, API gateways)"
elif monolithic_indicators > 0:
project_type = "Monolithic Architecture"
project_evidence = f"Found {monolithic_indicators} monolithic indicators (large files, single application structure)"
else:
project_type = "Modular Monolith"
project_evidence = "Mixed patterns detected - likely a modular monolith transitioning to microservices"
# Find code examples for detailed analysis
code_examples = []
for file_analysis in analysis.file_analyses:
if file_analysis.lines_of_code > 500: # Focus on large files
code_examples.append({
'title': f"Large File Analysis: {file_analysis.path.split('/')[-1]}",
'file': file_analysis.path,
'lines': file_analysis.lines_of_code,
'issue': f"File exceeds recommended size ({file_analysis.lines_of_code} lines)",
'code_snippet': self._extract_code_snippet(file_analysis)
})
return {
'project_type': project_type,
'project_evidence': project_evidence,
'code_examples': code_examples[:5] # Top 5 examples
}
def _analyze_controller_layer(self, analysis: RepositoryAnalysis) -> dict:
"""Analyze API controller layer patterns."""
controller_files = []
total_endpoints = 0
security_issues = []
for file_analysis in analysis.file_analyses:
file_path = file_analysis.path.lower()
file_content = getattr(file_analysis, 'content', '') or ''
# Detect controller files
if any(indicator in file_path for indicator in ['controller', 'api', 'endpoint', 'route']):
controller_files.append(file_analysis)
# Count endpoints (rough estimate)
endpoint_count = file_content.count('@RequestMapping') + file_content.count('@GetMapping') + \
file_content.count('@PostMapping') + file_content.count('@PutMapping') + \
file_content.count('@DeleteMapping') + file_content.count('@RestController')
total_endpoints += endpoint_count
# Check for security issues
if 'password' in file_content.lower() and 'hardcoded' in file_content.lower():
security_issues.append("Hardcoded passwords detected")
if '@CrossOrigin(origins = "*")' in file_content:
security_issues.append("Wildcard CORS policy detected")
if 'migration' in file_path and 'public' in file_content:
security_issues.append("Public migration endpoint detected")
largest_controller = max(controller_files, key=lambda x: x.lines_of_code) if controller_files else None
return {
'controller_count': len(controller_files),
'total_endpoints': total_endpoints,
'largest_controller': f"{largest_controller.path} ({largest_controller.lines_of_code} lines)" if largest_controller else "None",
'security_issues': "; ".join(security_issues) if security_issues else "No major security issues detected"
}
def _analyze_backend_patterns(self, analysis: RepositoryAnalysis) -> dict:
"""Analyze backend architectural patterns."""
# Data layer analysis
data_files = [fa for fa in analysis.file_analyses if any(indicator in fa.path.lower() for indicator in ['entity', 'model', 'dbcontext', 'migration', 'config'])]
data_pattern = "Entity Framework" if any('dbcontext' in fa.path.lower() for fa in data_files) else "Custom ORM"
config_files = len([fa for fa in data_files if 'config' in fa.path.lower()])
config_lines = sum(fa.lines_of_code for fa in data_files if 'config' in fa.path.lower())
# Service layer analysis
service_files = [fa for fa in analysis.file_analyses if any(indicator in fa.path.lower() for indicator in ['service', 'business', 'logic', 'manager'])]
service_pattern = "Service Layer Pattern" if service_files else "No clear service layer"
largest_service = max(service_files, key=lambda x: x.lines_of_code) if service_files else None
# Repository layer analysis
repo_files = [fa for fa in analysis.file_analyses if any(indicator in fa.path.lower() for indicator in ['repository', 'dao', 'dataaccess'])]
repo_pattern = "Repository Pattern" if repo_files else "Direct Data Access"
factory_usage = any('factory' in fa.path.lower() for fa in repo_files)
return {
'data_layer': {
'pattern': data_pattern,
'config_files': config_files,
'config_lines': config_lines,
'issues': f"{len(data_files)} data files, {config_lines} configuration lines"
},
'service_layer': {
'pattern': service_pattern,
'service_files': len(service_files),
'largest_service': f"{largest_service.path} ({largest_service.lines_of_code} lines)" if largest_service else "None",
'issues': f"{len(service_files)} service files found"
},
'repository_layer': {
'pattern': repo_pattern,
'repository_files': len(repo_files),
'factory_usage': "Factory pattern detected" if factory_usage else "No factory pattern",
'issues': f"{len(repo_files)} repository files found"
}
}
def _extract_code_snippet(self, file_analysis) -> str:
"""Extract a code snippet from file analysis."""
content = getattr(file_analysis, 'content', '') or ''
if not content:
return "// Code content not available"
# Extract first 20 lines as snippet
lines = content.split('\n')[:20]
snippet = '\n'.join(lines)
# Truncate if too long
if len(snippet) > 500:
snippet = snippet[:500] + "\n// ... (truncated)"
return snippet
def _analyze_frontend_architecture(self, analysis: RepositoryAnalysis) -> dict:
"""Enhanced AI-powered frontend architectural analysis for business users."""
# Identify frontend files
frontend_files = []
for file_analysis in analysis.file_analyses:
file_path = file_analysis.path.lower()
if any(indicator in file_path for indicator in ['js', 'jsx', 'ts', 'tsx', 'vue', 'html', 'css', 'scss', 'sass']):
frontend_files.append(file_analysis)
# Return empty if no frontend files found
if not frontend_files:
return {'has_frontend': False}
try:
# Use AI to analyze frontend architecture comprehensively
frontend_analysis = self._ai_analyze_frontend_comprehensive(frontend_files, analysis)
return frontend_analysis
except Exception as e:
print(f"Error in frontend AI analysis: {e}")
# Fallback to basic analysis if AI fails
return self._basic_frontend_analysis(frontend_files)
def _ai_analyze_frontend_comprehensive(self, frontend_files, analysis: RepositoryAnalysis) -> dict:
"""AI-powered comprehensive frontend analysis for business understanding."""
try:
# Step 1: Framework Detection
framework_info = self._ai_detect_frontend_framework(frontend_files)
# Step 2: Component Structure Analysis
component_analysis = self._ai_analyze_component_structure(frontend_files)
# Step 3: Navigation Flow Analysis
navigation_analysis = self._ai_analyze_navigation_flow(frontend_files)
# Step 4: Business Functionality Analysis
business_analysis = self._ai_analyze_business_functionality(frontend_files)
# Step 5: Data Flow Analysis
data_flow_analysis = self._ai_analyze_data_flow(frontend_files)
# Step 6: UI/UX Pattern Analysis
ui_pattern_analysis = self._ai_analyze_ui_patterns(frontend_files)
# Step 7: API Integration Analysis
api_analysis = self._ai_analyze_api_integration(frontend_files)
# Step 8: Performance & Security Analysis
performance_analysis = self._ai_analyze_frontend_performance(frontend_files)
# Combine all analyses
return {
'has_frontend': True,
'framework_info': framework_info,
'component_analysis': component_analysis,
'navigation_analysis': navigation_analysis,
'business_analysis': business_analysis,
'data_flow_analysis': data_flow_analysis,
'ui_pattern_analysis': ui_pattern_analysis,
'api_analysis': api_analysis,
'performance_analysis': performance_analysis,
'total_files': len(frontend_files),
'total_lines': sum(fa.lines_of_code for fa in frontend_files)
}
except Exception as e:
print(f"Error in comprehensive frontend analysis: {e}")
return self._basic_frontend_analysis(frontend_files)
def _ai_detect_frontend_framework(self, frontend_files) -> dict:
"""AI-powered framework detection and analysis."""
try:
# Prepare context for AI analysis
file_info = []
package_json_content = ""
key_file_contents = []
for fa in frontend_files[:20]: # Limit to first 20 files for context
file_info.append(f"- {fa.path} ({fa.lines_of_code} lines)")
# Get package.json content if exists
if 'package.json' in fa.path.lower():
package_json_content = getattr(fa, 'content', '') or ''
# Get key file contents for framework detection
if any(indicator in fa.path.lower() for indicator in ['app.', 'index.', 'main.', 'package.json', 'config']):
content = getattr(fa, 'content', '') or ''
if content and len(content) > 0:
key_file_contents.append(f"File: {fa.path}\n{content[:1000]}...")
# Prepare AI prompt for framework detection
prompt = f"""
Analyze this frontend codebase to detect the framework and provide business-friendly insights.
FILES FOUND:
{chr(10).join(file_info)}
PACKAGE.JSON CONTENT:
{package_json_content[:2000] if package_json_content else 'Not found'}
KEY FILE CONTENTS:
{chr(10).join(key_file_contents[:3])}
Please analyze and provide:
1. Framework Detection: What frontend framework is being used? (React, Vue, Angular, Next.js, plain JavaScript, etc.)
2. Version Information: What versions are being used?
3. Business Explanation: In simple terms, what does this framework mean for the business?
4. Setup Complexity: How complex is this setup for developers?
5. Maintenance Requirements: What does this mean for ongoing maintenance?
Format your response as a business-friendly explanation that non-technical stakeholders can understand.
"""
# Call AI for analysis
ai_response = self._make_ai_request(prompt)
return {
'ai_analysis': ai_response,
'detected_framework': self._extract_framework_from_response(ai_response),
'business_summary': self._extract_business_summary_from_response(ai_response, 'framework')
}
except Exception as e:
print(f"Error in framework detection: {e}")
return {
'ai_analysis': 'Framework detection failed',
'detected_framework': 'Unknown',
'business_summary': 'Unable to determine frontend framework'
}
def _ai_analyze_component_structure(self, frontend_files) -> dict:
"""AI-powered component structure and hierarchy analysis."""
try:
# Get component files (React, Vue, etc.)
component_files = [fa for fa in frontend_files if any(ext in fa.path.lower() for ext in ['.jsx', '.tsx', '.vue', '.component.'])]
# Prepare component analysis context
component_info = []
component_contents = []
for fa in component_files[:15]: # Analyze top 15 components
component_info.append(f"- {fa.path} ({fa.lines_of_code} lines)")
content = getattr(fa, 'content', '') or ''
if content:
component_contents.append(f"COMPONENT: {fa.path}\n{content[:800]}...\n---\n")
prompt = f"""
Analyze the component structure of this frontend application to help business stakeholders understand how the user interface is organized.
COMPONENT FILES FOUND ({len(component_files)} total):
{chr(10).join(component_info)}
SAMPLE COMPONENT CODE:
{chr(10).join(component_contents[:5])}
Please provide a business-friendly analysis including:
1. COMPONENT HIERARCHY: Create a simple tree structure showing how components are organized (like a company org chart)
2. MAIN COMPONENTS: List the key components and explain what each does for users in plain English
3. COMPONENT RELATIONSHIPS: Explain how components work together (parent-child relationships)
4. BUSINESS FUNCTIONALITY: For each major component, explain what business function it serves
5. USER INTERACTION: Describe how users interact with each component
6. REUSABILITY: Explain if components are reused across the application
Write this as if explaining to a business manager who needs to understand the frontend structure but has no coding background.
Use analogies to business concepts where helpful.
"""
ai_response = self._make_ai_request(prompt)
return {
'ai_analysis': ai_response,
'component_count': len(component_files),
'business_summary': self._extract_business_summary_from_response(ai_response, 'components'),
'hierarchy_description': self._extract_hierarchy_from_response(ai_response)
}
except Exception as e:
print(f"Error in component structure analysis: {e}")
return {
'ai_analysis': 'Component analysis failed',
'component_count': len([fa for fa in frontend_files if any(ext in fa.path.lower() for ext in ['.jsx', '.tsx', '.vue'])]),
'business_summary': 'Unable to analyze component structure'
}
def _ai_analyze_navigation_flow(self, frontend_files) -> dict:
"""AI-powered navigation and user journey analysis."""
try:
# Find routing/navigation files
routing_files = [fa for fa in frontend_files if any(indicator in fa.path.lower() for indicator in ['route', 'router', 'navigation', 'nav', 'menu', 'app.js', 'app.tsx'])]
# Prepare routing context
routing_info = []
routing_contents = []
for fa in routing_files[:10]:
routing_info.append(f"- {fa.path} ({fa.lines_of_code} lines)")
content = getattr(fa, 'content', '') or ''
if content:
routing_contents.append(f"FILE: {fa.path}\n{content[:1000]}...\n---\n")
prompt = f"""
Analyze the navigation structure and user journey flow of this frontend application.
NAVIGATION/ROUTING FILES FOUND:
{chr(10).join(routing_info)}
ROUTING CODE SAMPLES:
{chr(10).join(routing_contents[:3])}
Please provide a business-focused analysis including:
1. USER JOURNEY MAP: Describe the main paths users can take through the application (like a customer journey map)
2. PAGE STRUCTURE: List all the main pages/screens and explain what each one does for users
3. NAVIGATION PATTERNS: Explain how users move between different sections (menus, buttons, links)
4. USER ROLES: If different types of users see different navigation, explain the differences
5. BUSINESS PROCESSES: Map the navigation to business processes (e.g., login → dashboard → reports → settings)
6. USER EXPERIENCE: Assess if the navigation makes sense from a user perspective
Write this for business stakeholders to understand how their customers/users navigate through the application.
Focus on business value and user experience rather than technical implementation.
"""
ai_response = self._make_ai_request(prompt)
return {
'ai_analysis': ai_response,
'routing_files_count': len(routing_files),
'business_summary': self._extract_business_summary_from_response(ai_response, 'navigation'),
'user_journey_map': self._extract_user_journey_from_response(ai_response)
}
except Exception as e:
print(f"Error in navigation flow analysis: {e}")
return {
'ai_analysis': 'Navigation analysis failed',
'routing_files_count': 0,
'business_summary': 'Unable to analyze navigation flow'
}
def _ai_analyze_business_functionality(self, frontend_files) -> dict:
"""AI-powered business functionality analysis."""
try:
# Get a sample of diverse frontend files for business analysis
business_files = []
forms_files = []
service_files = []
for fa in frontend_files:
if any(indicator in fa.path.lower() for indicator in ['form', 'input', 'submit']):
forms_files.append(fa)
elif any(indicator in fa.path.lower() for indicator in ['service', 'api', 'data', 'store']):
service_files.append(fa)
elif any(indicator in fa.path.lower() for indicator in ['dashboard', 'profile', 'settings', 'admin']):
business_files.append(fa)
# Prepare business context
all_files_sample = (business_files + forms_files + service_files)[:15]
business_contents = []
for fa in all_files_sample:
content = getattr(fa, 'content', '') or ''
if content:
business_contents.append(f"FILE: {fa.path}\nPURPOSE: {self._guess_file_purpose(fa.path)}\nCODE SAMPLE:\n{content[:600]}...\n---\n")
prompt = f"""
Analyze the business functionality provided by this frontend application. Focus on what this application does for the business and its users.
KEY BUSINESS FILES ANALYZED:
{chr(10).join([f"- {fa.path}" for fa in all_files_sample])}
FILE CONTENTS AND PURPOSES:
{chr(10).join(business_contents[:8])}
Please provide a comprehensive business analysis including:
1. PRIMARY BUSINESS PURPOSE: What is the main business function of this application?
2. USER CAPABILITIES: What can users accomplish with this application?
3. BUSINESS PROCESSES: What business processes are supported or automated?
4. VALUE PROPOSITION: What value does this application provide to the business?
5. USER TYPES: What different types of users interact with this application?
6. KEY FEATURES: List the main features and explain their business impact
7. DATA HANDLING: What types of business data does the application manage?
8. WORKFLOW SUPPORT: How does it support business workflows?
Write this analysis for business executives who need to understand the value and capabilities of their frontend application.
Focus on business outcomes, user benefits, and operational impact.
"""
ai_response = self._make_ai_request(prompt)
return {
'ai_analysis': ai_response,
'forms_count': len(forms_files),
'service_files_count': len(service_files),
'business_files_count': len(business_files),
'business_summary': self._extract_business_summary_from_response(ai_response, 'functionality')
}
except Exception as e:
print(f"Error in business functionality analysis: {e}")
return {
'ai_analysis': 'Business functionality analysis failed',
'business_summary': 'Unable to analyze business functionality'
}
def _ai_analyze_data_flow(self, frontend_files) -> dict:
"""AI-powered data flow and state management analysis."""
try:
# Find data/state management files
data_files = [fa for fa in frontend_files if any(indicator in fa.path.lower() for indicator in ['store', 'state', 'context', 'reducer', 'action', 'data', 'api', 'service'])]
# Prepare data flow context
data_contents = []
for fa in data_files[:10]:
content = getattr(fa, 'content', '') or ''
if content:
data_contents.append(f"DATA FILE: {fa.path}\n{content[:800]}...\n---\n")
prompt = f"""
Analyze how data flows through this frontend application to help business stakeholders understand data management.
DATA/STATE MANAGEMENT FILES ({len(data_files)} total):
{chr(10).join([f"- {fa.path}" for fa in data_files])}
DATA FLOW CODE SAMPLES:
{chr(10).join(data_contents[:5])}
Please provide a business-friendly analysis including:
1. DATA FLOW OVERVIEW: Explain in simple terms how data moves through the application
2. STATE MANAGEMENT: How does the application remember user actions and data?
3. DATA SOURCES: Where does the application get its data from? (APIs, user input, etc.)
4. DATA STORAGE: How is data temporarily stored while users interact with the application?
5. BUSINESS DATA TYPES: What types of business information does the application handle?
6. DATA UPDATES: How does the application keep data current and synchronized?
7. USER DATA IMPACT: How do user actions affect the data shown to other users?
Explain this using business analogies - like how information flows in an office or how a store manages inventory.
Focus on helping business users understand data consistency and user experience implications.
"""
ai_response = self._make_ai_request(prompt)
return {
'ai_analysis': ai_response,
'data_files_count': len(data_files),
'business_summary': self._extract_business_summary_from_response(ai_response, 'data_flow')
}
except Exception as e:
print(f"Error in data flow analysis: {e}")
return {
'ai_analysis': 'Data flow analysis failed',
'business_summary': 'Unable to analyze data flow'
}
def _ai_analyze_ui_patterns(self, frontend_files) -> dict:
"""AI-powered UI/UX pattern analysis."""
try:
# Find UI/styling files
ui_files = [fa for fa in frontend_files if any(indicator in fa.path.lower() for indicator in ['component', 'ui', 'style', 'css', 'theme', 'design'])]
# Prepare UI context
ui_contents = []
for fa in ui_files[:12]:
content = getattr(fa, 'content', '') or ''
if content:
ui_contents.append(f"UI FILE: {fa.path}\n{content[:600]}...\n---\n")
prompt = f"""
Analyze the user interface patterns and user experience design of this frontend application.
UI/DESIGN FILES ({len(ui_files)} total):
{chr(10).join([f"- {fa.path}" for fa in ui_files])}
UI CODE SAMPLES:
{chr(10).join(ui_contents[:6])}
Please provide a business-focused UI/UX analysis including:
1. DESIGN CONSISTENCY: Is the user interface consistent across different pages?
2. USER INTERACTION PATTERNS: What common ways do users interact with the application? (forms, buttons, menus)
3. ACCESSIBILITY: How user-friendly is the application for different types of users?
4. RESPONSIVE DESIGN: Does the application work well on different devices (mobile, tablet, desktop)?
5. VISUAL HIERARCHY: How does the design guide users to important information and actions?
6. FORM HANDLING: How user-friendly are the forms for data input?
7. ERROR HANDLING: How does the application help users when something goes wrong?
8. LOADING STATES: How does the application communicate when it's processing information?
Write this for business stakeholders who care about user satisfaction and conversion rates.
Focus on how UI patterns affect user behavior and business outcomes.
"""
ai_response = self._make_ai_request(prompt)
return {
'ai_analysis': ai_response,
'ui_files_count': len(ui_files),
'business_summary': self._extract_business_summary_from_response(ai_response, 'ui_patterns')
}
except Exception as e:
print(f"Error in UI pattern analysis: {e}")
return {
'ai_analysis': 'UI pattern analysis failed',
'business_summary': 'Unable to analyze UI patterns'
}
def _ai_analyze_api_integration(self, frontend_files) -> dict:
"""AI-powered API integration analysis."""
try:
# Find API/service integration files
api_files = [fa for fa in frontend_files if any(indicator in fa.path.lower() for indicator in ['api', 'service', 'http', 'request', 'client', 'fetch'])]
# Prepare API context
api_contents = []
for fa in api_files[:8]:
content = getattr(fa, 'content', '') or ''
if content:
api_contents.append(f"API FILE: {fa.path}\n{content[:800]}...\n---\n")
prompt = f"""
Analyze how this frontend application communicates with backend services and external systems.
API/SERVICE FILES ({len(api_files)} total):
{chr(10).join([f"- {fa.path}" for fa in api_files])}
API INTEGRATION CODE:
{chr(10).join(api_contents[:4])}
Please provide a business-focused API integration analysis including:
1. BACKEND COMMUNICATION: How does the frontend get data from the backend systems?
2. REAL-TIME UPDATES: Does the application provide real-time information updates?
3. DATA SYNCHRONIZATION: How does the application ensure data consistency?
4. EXTERNAL SERVICES: What external services or third-party systems are integrated?
5. ERROR HANDLING: How does the application handle when backend services are unavailable?
6. AUTHENTICATION: How does the application verify user identity for API calls?
7. PERFORMANCE IMPACT: How do API calls affect user experience and application speed?
8. BUSINESS DEPENDENCIES: What business functions depend on these integrations?
Explain this for business stakeholders who need to understand system dependencies and integration risks.
Focus on business continuity and user experience implications.
"""
ai_response = self._make_ai_request(prompt)
return {
'ai_analysis': ai_response,
'api_files_count': len(api_files),
'business_summary': self._extract_business_summary_from_response(ai_response, 'api_integration')
}
except Exception as e:
print(f"Error in API integration analysis: {e}")
return {
'ai_analysis': 'API integration analysis failed',
'business_summary': 'Unable to analyze API integration'
}
def _ai_analyze_frontend_performance(self, frontend_files) -> dict:
"""AI-powered frontend performance and security analysis."""
try:
# Calculate basic metrics
total_lines = sum(fa.lines_of_code for fa in frontend_files)
large_files = [fa for fa in frontend_files if fa.lines_of_code > 500]
# Find performance-related files
perf_files = [fa for fa in frontend_files if any(indicator in fa.path.lower() for indicator in ['config', 'webpack', 'bundle', 'optimize', 'lazy', 'async'])]
# Prepare performance context
perf_info = []
for fa in large_files[:5]:
perf_info.append(f"Large file: {fa.path} ({fa.lines_of_code:,} lines)")
prompt = f"""
Analyze the performance and security characteristics of this frontend application from a business perspective.
PERFORMANCE METRICS:
- Total frontend files: {len(frontend_files)}
- Total lines of code: {total_lines:,}
- Large files (>500 lines): {len(large_files)}
- Performance-related files: {len(perf_files)}
LARGE FILES DETECTED:
{chr(10).join(perf_info)}
Please provide a business-focused performance analysis including:
1. USER EXPERIENCE IMPACT: How do these technical characteristics affect user experience?
2. LOADING PERFORMANCE: How fast will the application load for users?
3. SCALABILITY: Can the application handle growing numbers of users?
4. MAINTENANCE BURDEN: How complex is this application to maintain and update?
5. SECURITY CONSIDERATIONS: What security risks should the business be aware of?
6. MOBILE PERFORMANCE: How well will this work on mobile devices?
7. BANDWIDTH REQUIREMENTS: What internet connection quality do users need?
8. BUSINESS CONTINUITY: How resilient is the application to technical issues?
Translate technical performance metrics into business terms that executives can understand.
Focus on user satisfaction, operational costs, and business risks.
"""
ai_response = self._make_ai_request(prompt)
# Calculate estimated metrics
estimated_load_time = max(1, total_lines / 10000)
bundle_size_mb = (total_lines * 0.5) / 1000
performance_score = max(20, min(100, 100 - (total_lines / 1000)))
return {
'ai_analysis': ai_response,
'total_lines': total_lines,
'large_files_count': len(large_files),
'estimated_load_time': f"{estimated_load_time:.1f}",
'bundle_size': f"{bundle_size_mb:.1f} MB",
'performance_score': f"{performance_score:.0f}",
'business_summary': self._extract_business_summary_from_response(ai_response, 'performance')
}
except Exception as e:
print(f"Error in performance analysis: {e}")
return {
'ai_analysis': 'Performance analysis failed',
'business_summary': 'Unable to analyze performance characteristics'
}
def _basic_frontend_analysis(self, frontend_files) -> dict:
"""Fallback basic frontend analysis if AI fails."""
try:
largest_file = max(frontend_files, key=lambda x: x.lines_of_code) if frontend_files else None
total_lines = sum(fa.lines_of_code for fa in frontend_files)
return {
'has_frontend': True,
'basic_analysis': True,
'framework_info': {
'detected_framework': 'Unknown',
'business_summary': 'Frontend framework could not be automatically detected'
},
'component_analysis': {
'component_count': len([fa for fa in frontend_files if any(ext in fa.path.lower() for ext in ['.jsx', '.tsx', '.vue'])]),
'business_summary': 'Component structure analysis unavailable'
},
'performance_analysis': {
'total_lines': total_lines,
'bundle_size': f"{(total_lines * 0.5) / 1000:.1f} MB",
'performance_score': f"{max(20, 100 - (total_lines / 1000)):.0f}",
'business_summary': 'Basic performance metrics only'
},
'largest_file': {
'name': largest_file.path.split('/')[-1] if largest_file else 'None',
'lines': largest_file.lines_of_code if largest_file else 0
}
}
except Exception as e:
print(f"Error in basic frontend analysis: {e}")
return {'has_frontend': False}
def _guess_file_purpose(self, file_path):
"""Guess the business purpose of a file based on its path."""
path_lower = file_path.lower()
if 'login' in path_lower or 'auth' in path_lower:
return 'User authentication and login'
elif 'dashboard' in path_lower:
return 'Main dashboard/overview page'
elif 'profile' in path_lower:
return 'User profile management'
elif 'settings' in path_lower:
return 'Application settings and configuration'
elif 'form' in path_lower:
return 'Data input and form handling'
elif 'admin' in path_lower:
return 'Administrative functions'
elif 'api' in path_lower or 'service' in path_lower:
return 'Backend communication and data services'
else:
return 'General application functionality'
def _extract_framework_from_response(self, response):
"""Extract detected framework from AI response."""
response_lower = response.lower()
if 'react' in response_lower and 'next' in response_lower:
return 'Next.js (React)'
elif 'react' in response_lower:
return 'React'
elif 'vue' in response_lower:
return 'Vue.js'
elif 'angular' in response_lower:
return 'Angular'
elif 'svelte' in response_lower:
return 'Svelte'
else:
return 'JavaScript/Unknown'
def _extract_business_summary_from_response(self, response, section_type):
"""Extract business summary from AI response."""
try:
# Try to find business-focused summary in the response
lines = response.split('\n')
summary_lines = []
for line in lines:
if any(keyword in line.lower() for keyword in ['business', 'user', 'customer', 'value', 'benefit']):
summary_lines.append(line.strip())
if len(summary_lines) >= 3:
break
if summary_lines:
return ' '.join(summary_lines)
else:
# Fallback: take first few meaningful lines
meaningful_lines = [line.strip() for line in lines if len(line.strip()) > 20][:2]
return ' '.join(meaningful_lines) if meaningful_lines else f"{section_type.title()} analysis completed"
except:
return f"{section_type.title()} analysis completed"
def _extract_hierarchy_from_response(self, response):
"""Extract component hierarchy from AI response."""
try:
lines = response.split('\n')
hierarchy_lines = []
capturing = False
for line in lines:
if 'hierarchy' in line.lower() or 'tree' in line.lower() or 'structure' in line.lower():
capturing = True
continue
if capturing and (line.startswith('-') or line.startswith('') or line.startswith('') or line.startswith('')):
hierarchy_lines.append(line.strip())
if len(hierarchy_lines) >= 10:
break
elif capturing and len(hierarchy_lines) > 0 and line.strip() == '':
break
return '\n'.join(hierarchy_lines) if hierarchy_lines else 'Component hierarchy not clearly identified'
except:
return 'Component hierarchy extraction failed'
def _extract_user_journey_from_response(self, response):
"""Extract user journey information from AI response."""
try:
lines = response.split('\n')
journey_lines = []
capturing = False
for line in lines:
if 'journey' in line.lower() or 'flow' in line.lower() or 'navigation' in line.lower():
capturing = True
continue
if capturing and ('' in line or '->' in line or line.strip().startswith(('1.', '2.', '3.', '4.', '5.'))):
journey_lines.append(line.strip())
if len(journey_lines) >= 8:
break
elif capturing and len(journey_lines) > 0 and line.strip() == '':
break
return '\n'.join(journey_lines) if journey_lines else 'User journey flow not clearly identified'
except:
return 'User journey extraction failed'
def _format_ai_analysis_for_pdf(self, ai_analysis):
"""Format AI analysis text for PDF display."""
try:
# Clean up the text for PDF formatting
text = str(ai_analysis)
# Remove excessive whitespace and format for PDF
lines = text.split('\n')
formatted_lines = []
for line in lines:
line = line.strip()
if line and len(line) > 3: # Skip very short lines
# Remove markdown formatting that doesn't work in PDF
line = line.replace('**', '').replace('##', '').replace('###', '')
# Truncate very long lines
if len(line) > 500:
line = line[:500] + "..."
formatted_lines.append(line)
# Join with proper spacing and limit total length
result = '<br/>'.join(formatted_lines)
if len(result) > 3000: # Limit total length for PDF
result = result[:3000] + "...<br/><br/>[Analysis truncated for PDF display]"
return result
except Exception as e:
return f"Error formatting analysis: {str(e)}"
def _format_hierarchy_for_pdf(self, hierarchy_text):
"""Format component hierarchy text for PDF display."""
try:
text = str(hierarchy_text)
lines = text.split('\n')
formatted_lines = []
for line in lines:
line = line.strip()
if line:
# Ensure proper indentation for hierarchy
if line.startswith(('', '', '')):
formatted_lines.append(f"&nbsp;&nbsp;&nbsp;&nbsp;{line}")
elif line.startswith('-') or line.startswith(''):
formatted_lines.append(f"&nbsp;&nbsp;{line}")
else:
formatted_lines.append(line)
return '<br/>'.join(formatted_lines[:15]) # Limit to 15 lines
except Exception as e:
return f"Error formatting hierarchy: {str(e)}"
def _format_user_journey_for_pdf(self, journey_text):
"""Format user journey text for PDF display."""
try:
text = str(journey_text)
lines = text.split('\n')
formatted_lines = []
for line in lines:
line = line.strip()
if line:
# Format journey steps nicely
if '' in line or '->' in line:
formatted_lines.append(f"<b>{line}</b>")
elif line.startswith(('1.', '2.', '3.', '4.', '5.')):
formatted_lines.append(f"<b>{line}</b>")
else:
formatted_lines.append(line)
return '<br/>'.join(formatted_lines[:12]) # Limit to 12 lines
except Exception as e:
return f"Error formatting user journey: {str(e)}"
def _analyze_testing_infrastructure(self, analysis: RepositoryAnalysis) -> dict:
"""Analyze testing infrastructure across the entire codebase."""
# Separate backend and frontend files
backend_files = []
frontend_files = []
for file_analysis in analysis.file_analyses:
file_path = file_analysis.path.lower()
if any(indicator in file_path for indicator in ['js', 'jsx', 'ts', 'tsx', 'vue', 'html', 'css', 'scss', 'sass']):
frontend_files.append(file_analysis)
else:
backend_files.append(file_analysis)
# Backend Testing Analysis
backend_test_files = [fa for fa in backend_files if any(indicator in fa.path.lower() for indicator in ['test', 'spec', '__tests__', 'testing'])]
backend_test_count = len(backend_test_files)
backend_file_count = len(backend_files)
backend_coverage = (backend_test_count / backend_file_count * 100) if backend_file_count > 0 else 0
# Frontend Testing Analysis
frontend_test_files = [fa for fa in frontend_files if any(indicator in fa.path.lower() for indicator in ['test', 'spec', '__tests__', 'testing'])]
frontend_test_count = len(frontend_test_files)
frontend_file_count = len(frontend_files)
frontend_coverage = (frontend_test_count / frontend_file_count * 100) if frontend_file_count > 0 else 0
# Integration Testing Analysis
integration_tests = len([fa for fa in analysis.file_analyses if any(indicator in fa.path.lower() for indicator in ['integration', 'e2e', 'end-to-end', 'api-test'])])
api_tests = len([fa for fa in analysis.file_analyses if any(indicator in fa.path.lower() for indicator in ['api-test', 'api_test', 'apitest'])])
database_tests = len([fa for fa in analysis.file_analyses if any(indicator in fa.path.lower() for indicator in ['db-test', 'database-test', 'db_test'])])
e2e_tests = len([fa for fa in analysis.file_analyses if any(indicator in fa.path.lower() for indicator in ['e2e', 'end-to-end', 'cypress', 'playwright'])])
# Security Testing Analysis
security_tests = len([fa for fa in analysis.file_analyses if any(indicator in fa.path.lower() for indicator in ['security-test', 'security_test', 'penetration', 'vulnerability'])])
vulnerability_scans = len([fa for fa in analysis.file_analyses if any(indicator in fa.path.lower() for indicator in ['vulnerability', 'security-scan', 'owasp'])])
penetration_tests = len([fa for fa in analysis.file_analyses if any(indicator in fa.path.lower() for indicator in ['penetration', 'pentest', 'security-pen'])])
auth_tests = len([fa for fa in analysis.file_analyses if any(indicator in fa.path.lower() for indicator in ['auth-test', 'authentication-test', 'login-test'])])
# Performance Testing Analysis
performance_tests = len([fa for fa in analysis.file_analyses if any(indicator in fa.path.lower() for indicator in ['performance-test', 'perf-test', 'load-test', 'stress-test'])])
load_tests = len([fa for fa in analysis.file_analyses if any(indicator in fa.path.lower() for indicator in ['load-test', 'loadtest', 'jmeter', 'artillery'])])
stress_tests = len([fa for fa in analysis.file_analyses if any(indicator in fa.path.lower() for indicator in ['stress-test', 'stresstest', 'chaos-test'])])
benchmark_tests = len([fa for fa in analysis.file_analyses if any(indicator in fa.path.lower() for indicator in ['benchmark', 'bench', 'performance-bench'])])
# Test Quality Assessment
overall_coverage = (backend_coverage + frontend_coverage) / 2
test_quality_score = min(100, overall_coverage * 2) # Scale up the score
# Critical Issues
critical_issues = []
if backend_coverage < 10:
critical_issues.append("Backend test coverage below 10%")
if frontend_coverage < 5:
critical_issues.append("Frontend test coverage below 5%")
if integration_tests == 0:
critical_issues.append("No integration tests found")
if security_tests == 0:
critical_issues.append("No security tests found")
if performance_tests == 0:
critical_issues.append("No performance tests found")
# Recommendations
recommendations = []
if backend_coverage < 50:
recommendations.append("Implement comprehensive backend unit tests")
if frontend_coverage < 30:
recommendations.append("Add frontend component and integration tests")
if integration_tests == 0:
recommendations.append("Create API integration tests")
if security_tests == 0:
recommendations.append("Implement security testing suite")
if performance_tests == 0:
recommendations.append("Add performance and load testing")
# Backend test types
backend_test_types = []
if any('unit' in fa.path.lower() for fa in backend_test_files):
backend_test_types.append("Unit Tests")
if any('integration' in fa.path.lower() for fa in backend_test_files):
backend_test_types.append("Integration Tests")
if any('mock' in fa.path.lower() for fa in backend_test_files):
backend_test_types.append("Mock Tests")
# Frontend test types
frontend_test_types = []
if any('component' in fa.path.lower() for fa in frontend_test_files):
frontend_test_types.append("Component Tests")
if any('unit' in fa.path.lower() for fa in frontend_test_files):
frontend_test_types.append("Unit Tests")
if any('integration' in fa.path.lower() for fa in frontend_test_files):
frontend_test_types.append("Integration Tests")
# Backend test issues
backend_test_issues = []
empty_backend_tests = len([fa for fa in backend_test_files if fa.lines_of_code == 0])
if empty_backend_tests > 0:
backend_test_issues.append(f"{empty_backend_tests} empty test files")
if backend_coverage < 20:
backend_test_issues.append("Very low test coverage")
# Frontend test issues
frontend_test_issues = []
empty_frontend_tests = len([fa for fa in frontend_test_files if fa.lines_of_code == 0])
if empty_frontend_tests > 0:
frontend_test_issues.append(f"{empty_frontend_tests} empty test files")
if frontend_coverage < 10:
frontend_test_issues.append("Very low test coverage")
return {
'backend_tests': f"{backend_test_count} test files for {backend_file_count} code files",
'backend_files': backend_file_count,
'backend_coverage': f"{backend_coverage:.1f}",
'frontend_tests': f"{frontend_test_count} test files for {frontend_file_count} files",
'frontend_files': frontend_file_count,
'frontend_coverage': f"{frontend_coverage:.1f}",
'integration_tests': f"{integration_tests}",
'security_tests': f"{security_tests}",
'performance_tests': f"{performance_tests}",
'backend_test_files': backend_test_count,
'backend_test_types': ", ".join(backend_test_types) if backend_test_types else "None detected",
'backend_test_issues': "; ".join(backend_test_issues) if backend_test_issues else "No major issues",
'frontend_test_files': frontend_test_count,
'frontend_test_types': ", ".join(frontend_test_types) if frontend_test_types else "None detected",
'frontend_test_issues': "; ".join(frontend_test_issues) if frontend_test_issues else "No major issues",
'api_tests': f"{api_tests}",
'database_tests': f"{database_tests}",
'e2e_tests': f"{e2e_tests}",
'vulnerability_scans': f"{vulnerability_scans}",
'penetration_tests': f"{penetration_tests}",
'auth_tests': f"{auth_tests}",
'load_tests': f"{load_tests}",
'stress_tests': f"{stress_tests}",
'benchmark_tests': f"{benchmark_tests}",
'overall_coverage': f"{overall_coverage:.1f}",
'test_quality_score': f"{test_quality_score:.0f}",
'critical_issues': "; ".join(critical_issues) if critical_issues else "No critical issues",
'recommendations': "; ".join(recommendations) if recommendations else "Testing infrastructure is adequate"
}
if __name__ == "__main__":
exit(asyncio.run(main()))