447 lines
17 KiB
Plaintext
447 lines
17 KiB
Plaintext
📋 Complete Project Context & Current State
|
|
Last Updated: July 3, 2025 - Code Generator Enhancement with AI-Driven Architecture
|
|
🎯 PROJECT OVERVIEW
|
|
Core Vision
|
|
Build a fully automated development pipeline that takes developer requirements in natural language and outputs complete, production-ready applications with 80-90% reduction in manual coding and zero developer intervention.
|
|
Success Metrics
|
|
|
|
80-90% reduction in manual coding for standard applications
|
|
Complete project delivery in under 30 minutes
|
|
Production-ready code quality (80%+ test coverage)
|
|
Zero developer intervention for deployment pipeline
|
|
AI must NEVER break its own generated code
|
|
|
|
Timeline
|
|
|
|
Total Duration: 12-week project
|
|
Current Position: Week 2.3 (Day 11)
|
|
Overall Progress: 60% Complete ⭐ MAJOR MILESTONE
|
|
|
|
🏗️ COMPLETE SYSTEM ARCHITECTURE
|
|
Project Location
|
|
/Users/yasha/Documents/Tech4biz-Code-Generator/automated-dev-pipeline
|
|
Production Architecture Vision
|
|
React Frontend (Port 3000) [Week 11-12]
|
|
↓ HTTP POST
|
|
API Gateway (Port 8000) ✅ OPERATIONAL
|
|
↓ HTTP POST
|
|
n8n Webhook (Port 5678) ✅ OPERATIONAL
|
|
↓ Orchestrates
|
|
6 Microservices (Ports 8001-8006) ✅ OPERATIONAL
|
|
↓ Results
|
|
Generated Application + Deployment
|
|
📊 CURRENT SERVICE STATUS
|
|
Service Ecosystem (12 Services - All Operational)
|
|
🏢 Infrastructure Layer (4 Services) - ✅ COMPLETE
|
|
|
|
PostgreSQL (port 5432) - pipeline_postgres ✅ Healthy
|
|
Redis (port 6379) - pipeline_redis ✅ Healthy
|
|
MongoDB (port 27017) - pipeline_mongodb ✅ Running
|
|
RabbitMQ (ports 5672/15672) - pipeline_rabbitmq ✅ Healthy
|
|
|
|
🔀 Orchestration Layer (1 Service) - ✅ COMPLETE
|
|
|
|
n8n (port 5678) - pipeline_n8n ✅ Healthy & Configured
|
|
|
|
URL: http://localhost:5678
|
|
Login: Pipeline Admin / Admin@12345
|
|
Webhook URL: http://localhost:5678/webhook-test/generate
|
|
|
|
|
|
|
|
🚪 API Gateway Layer (1 Service) - ✅ COMPLETE
|
|
|
|
API Gateway (port 8000) - pipeline_api_gateway ✅ Healthy
|
|
|
|
🤖 Microservices Layer (6 Services)
|
|
|
|
Requirement Processor (port 8001) - ✅ Enhanced & Working
|
|
Tech Stack Selector (port 8002) - ✅ Enhanced & Working
|
|
Architecture Designer (port 8003) - ✅ Enhanced (Claude AI fallback mode)
|
|
Code Generator (port 8004) - 🔄 CURRENT ENHANCEMENT FOCUS
|
|
Test Generator (port 8005) - ✅ Basic service running
|
|
Deployment Manager (port 8006) - ✅ Basic service running
|
|
|
|
🔄 CURRENT n8n WORKFLOW STATUS
|
|
Working Pipeline:
|
|
Webhook ✅ → HTTP Request (Requirement Processor) ✅ → HTTP Request1 (Tech Stack Selector) ✅ → HTTP Request2 (Architecture Designer) ✅ → HTTP Request3 (Code Generator) 🔄
|
|
n8n Workflow Configuration:
|
|
|
|
Workflow Name: "Development Pipeline - Main"
|
|
URL: http://localhost:5678/workflow/wYFqkCghMUVGfs9w
|
|
Webhook: http://localhost:5678/webhook-test/generate
|
|
Status: 3 services working, adding Code Generator integration
|
|
|
|
Verified Data Flow:
|
|
json// Input
|
|
{
|
|
"projectName": "E-commerce Platform",
|
|
"requirements": "A comprehensive e-commerce platform with product catalog, shopping cart, payment processing...",
|
|
"techStack": "React + Node.js"
|
|
}
|
|
|
|
// Output after 3 services
|
|
{
|
|
"requirements_analysis": {...},
|
|
"tech_stack_recommendations": [...],
|
|
"architecture_design": {...}
|
|
}
|
|
🧪 CURRENT TESTING COMMANDS
|
|
Complete Workflow Test:
|
|
bashcurl -X POST http://localhost:5678/webhook-test/generate \
|
|
-H "Content-Type: application/json" \
|
|
-d '{
|
|
"projectName": "E-commerce Platform",
|
|
"requirements": "A comprehensive e-commerce platform with product catalog, shopping cart, payment processing, order management, user accounts, admin dashboard, and real-time inventory management.",
|
|
"techStack": "React + Node.js"
|
|
}'
|
|
Service Health Checks:
|
|
bashcurl http://localhost:8001/health # Requirement Processor ✅
|
|
curl http://localhost:8002/health # Tech Stack Selector ✅
|
|
curl http://localhost:8003/health # Architecture Designer ✅
|
|
curl http://localhost:8004/health # Code Generator 🔄 (basic service)
|
|
🎯 CLAUDE AI INTEGRATION STATUS
|
|
Verified Working Configuration:
|
|
|
|
API Key: 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
|
|
Model: claude-3-5-sonnet-20241022
|
|
Status: ✅ API validated and working
|
|
Current Usage: Architecture Designer (fallback mode due to library version issues)
|
|
|
|
AI Integration Progress:
|
|
|
|
✅ Requirement Processor: Rule-based + Claude capability
|
|
✅ Tech Stack Selector: Rule-based + Claude capability
|
|
🔄 Architecture Designer: Claude AI ready (library compatibility issues)
|
|
🔄 Code Generator: CURRENT FOCUS - Advanced AI Integration
|
|
|
|
🚀 CURRENT TASK: CODE GENERATOR ENHANCEMENT
|
|
Current Problem:
|
|
|
|
Basic Code Generator service exists but only has template endpoints
|
|
Need intelligent, context-aware code generation
|
|
Critical Requirement: AI must NOT break its own generated code
|
|
Need enterprise-grade scalability for complex applications
|
|
|
|
Current Code Generator Status:
|
|
python# Basic service at port 8004
|
|
# Has /health, /api/v1/process endpoints
|
|
# No actual code generation capability
|
|
# Needs complete enhancement with AI integration
|
|
Requirements for Enhancement:
|
|
|
|
Intelligent Code Generation: Use Claude/GPT for dynamic code generation
|
|
Context Persistence: Maintain context across token limits
|
|
Consistency Guarantee: AI cannot break its own code
|
|
Enterprise Scale: Handle complex applications
|
|
Technology Agnostic: Support all major tech stacks
|
|
Production Ready: 80-90% ready code with minimal developer intervention
|
|
|
|
🏗️ PROPOSED ENHANCED ARCHITECTURE
|
|
New Code Generator Architecture:
|
|
Code Generation Request
|
|
↓
|
|
🎯 Orchestrator Agent (Claude - Architecture Decisions)
|
|
↓
|
|
📊 Code Knowledge Graph (Neo4j - Entity Relationships)
|
|
↓
|
|
🔍 Vector Context Manager (Chroma/Pinecone - Smart Context)
|
|
↓
|
|
🤖 Specialized AI Agents (Parallel Processing)
|
|
├── Frontend Agent (GPT-4 - React/Vue/Angular)
|
|
├── Backend Agent (Claude - APIs/Business Logic)
|
|
├── Database Agent (GPT-4 - Schemas/Migrations)
|
|
└── Config Agent (Claude - Docker/CI-CD)
|
|
↓
|
|
🛡️ Multi-Layer Validation (Consistency Checks)
|
|
↓
|
|
📦 Production-Ready Application Code
|
|
Key Components to Add:
|
|
1. Code Knowledge Graph (Neo4j)
|
|
sql-- Store all code entities and relationships
|
|
CREATE (component:Component {name: "UserProfile", type: "React"})
|
|
CREATE (api:API {name: "getUserProfile", endpoint: "/api/users/profile"})
|
|
CREATE (component)-[:CALLS]->(api)
|
|
2. Vector Context Manager
|
|
python# Smart context retrieval using embeddings
|
|
context = vector_db.similarity_search(
|
|
query="generate user authentication component",
|
|
limit=10,
|
|
threshold=0.8
|
|
)
|
|
3. Specialized AI Agents
|
|
pythonagents = {
|
|
'frontend': GPT4Agent(specialty='react_components'),
|
|
'backend': ClaudeAgent(specialty='api_business_logic'),
|
|
'database': GPT4Agent(specialty='schema_design'),
|
|
'config': ClaudeAgent(specialty='deployment_config')
|
|
}
|
|
4. Consistency Validation
|
|
python# Prevent AI from breaking its own code
|
|
validation_result = await validate_consistency(
|
|
new_code=generated_code,
|
|
existing_codebase=knowledge_graph.get_all_entities(),
|
|
api_contracts=stored_contracts
|
|
)
|
|
🔧 INTEGRATION PLAN
|
|
Step 1: Enhance Code Generator Service
|
|
bash# Location: /services/code-generator/src/main.py
|
|
# Add: Knowledge graph integration
|
|
# Add: Vector database for context
|
|
# Add: Multiple AI provider support
|
|
# Add: Validation layers
|
|
Step 2: Update n8n HTTP Request3 Node
|
|
# Current configuration needs update for new endpoints
|
|
URL: http://pipeline_code_generator:8004/api/v1/generate
|
|
Body: {
|
|
"architecture_design": $node["HTTP Request2"].json.data,
|
|
"complete_context": {...},
|
|
"project_name": $input.first().json.data.project_name
|
|
}
|
|
Step 3: Database Schema Updates
|
|
sql-- Add to existing PostgreSQL
|
|
-- Code generation context tables
|
|
-- Entity relationship storage
|
|
-- Generated code metadata
|
|
Step 4: Vector Database Setup
|
|
bash# Add Chroma/Pinecone for context storage
|
|
# Store code embeddings
|
|
# Enable smart context retrieval
|
|
📋 IMMEDIATE NEXT STEPS
|
|
Priority 1: Code Generator Enhancement (Current Session)
|
|
|
|
✅ Design enterprise-grade architecture
|
|
🔄 Implement AI-driven code generation with context persistence
|
|
🔄 Add consistency validation layers
|
|
🔄 Test with complete 4-service workflow
|
|
🔄 Deploy and integrate with n8n
|
|
|
|
Priority 2: Complete Pipeline (Week 2 finish)
|
|
|
|
Add Test Generator enhancement (service 5)
|
|
Add Deployment Manager enhancement (service 6)
|
|
Test complete 6-service automated pipeline
|
|
Optimize Claude AI integration across all services
|
|
|
|
Priority 3: Production Readiness (Week 3)
|
|
|
|
Performance optimization
|
|
Error handling and resilience
|
|
Monitoring and logging
|
|
Documentation and deployment guides
|
|
|
|
🛠️ TECHNICAL CONFIGURATION
|
|
Docker Service Names:
|
|
|
|
code-generator (service name for docker-compose commands)
|
|
pipeline_code_generator (container name)
|
|
|
|
Environment Variables Needed:
|
|
bashCLAUDE_API_KEY=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
|
|
OPENAI_API_KEY=<to_be_configured>
|
|
NEO4J_URI=<for_knowledge_graph>
|
|
VECTOR_DB_URL=<for_context_storage>
|
|
Dependencies to Add:
|
|
python# New requirements for enhanced code generator
|
|
neo4j==5.15.0
|
|
chromadb==0.4.18
|
|
langchain==0.1.0
|
|
openai==1.3.0
|
|
sentence-transformers==2.2.2
|
|
🎯 SUCCESS CRITERIA
|
|
Code Generator Enhancement Success:
|
|
|
|
✅ Generates production-ready frontend code (React/Vue/Angular)
|
|
✅ Generates complete backend APIs with business logic
|
|
✅ Generates database schemas and migrations
|
|
✅ Maintains context across token limits
|
|
✅ Never breaks its own generated code
|
|
✅ Handles enterprise-scale complexity
|
|
✅ Integrates seamlessly with n8n workflow
|
|
|
|
Overall Pipeline Success:
|
|
|
|
✅ 6-service automated pipeline operational
|
|
✅ 80-90% code generation with minimal developer intervention
|
|
✅ Production-ready applications in under 30 minutes
|
|
✅ Support for all major technology stacks
|
|
✅ Enterprise-grade scalability and reliability
|
|
|
|
🔄 RESUME POINT
|
|
Current Status: Designing and implementing enterprise-grade Code Generator with AI-driven architecture, context persistence, and consistency validation to ensure AI never breaks its own code.
|
|
Next Action: Implement the enhanced Code Generator service with Knowledge Graph + Vector DB + Multi-AI architecture, then integrate with n8n workflow as HTTP Request3.
|
|
Context: We have a working 3-service pipeline (Requirements → Tech Stack → Architecture) and need to add the Code Generator as the 4th service to actually generate production-ready application code.
|
|
|
|
|
|
|
|
|
|
🔧 LANGCHAIN INTEGRATION DISCUSSION
|
|
Decision Made:
|
|
We discussed using LangChain for Agent Orchestration combined with custom solutions for enterprise-grade code generation.
|
|
LangChain Integration Strategy:
|
|
What LangChain Will Handle:
|
|
python# LangChain Components in our architecture
|
|
from langchain.agents import Agent, Tool
|
|
from langchain.memory import ConversationSummaryBufferMemory
|
|
from langchain.tools import BaseTool
|
|
from langchain.chains import LLMChain
|
|
|
|
# Agent orchestration
|
|
class CodeGenerationAgent(Agent):
|
|
def __init__(self):
|
|
self.tools = [
|
|
Tool(name="get_dependencies", func=self.get_entity_dependencies),
|
|
Tool(name="validate_consistency", func=self.validate_code_consistency),
|
|
Tool(name="search_similar_code", func=self.search_similar_implementations),
|
|
Tool(name="get_api_contracts", func=self.get_existing_api_contracts)
|
|
]
|
|
|
|
# Persistent memory for long conversations
|
|
self.memory = ConversationSummaryBufferMemory(
|
|
llm=self.llm,
|
|
max_token_limit=2000,
|
|
return_messages=True
|
|
)
|
|
LangChain vs Custom Components:
|
|
✅ Use LangChain for:
|
|
|
|
Agent Orchestration - Managing multiple AI agents
|
|
Memory Management - ConversationSummaryBufferMemory for context
|
|
Tool Integration - Standardized tool calling interface
|
|
Prompt Templates - Dynamic prompt engineering
|
|
Chain Management - Sequential and parallel task execution
|
|
|
|
✅ Use Custom for:
|
|
|
|
Knowledge Graph Operations - Neo4j/ArangoDB specific logic
|
|
Vector Context Management - Specialized embeddings and retrieval
|
|
Code Validation Logic - Enterprise-specific consistency checks
|
|
Multi-AI Provider Management - Claude + GPT-4 + local models
|
|
|
|
Enhanced Architecture with LangChain:
|
|
Code Generation Request
|
|
↓
|
|
🎯 LangChain Orchestrator Agent
|
|
├── Tools: [get_dependencies, validate_consistency, search_code]
|
|
├── Memory: ConversationSummaryBufferMemory
|
|
└── Chains: [analysis_chain, generation_chain, validation_chain]
|
|
↓
|
|
📊 Custom Knowledge Graph (Neo4j)
|
|
↓
|
|
🔍 Custom Vector Context Manager (Chroma/Pinecone)
|
|
↓
|
|
🤖 LangChain Multi-Agent System
|
|
├── Frontend Agent (LangChain + GPT-4)
|
|
├── Backend Agent (LangChain + Claude)
|
|
├── Database Agent (LangChain + GPT-4)
|
|
└── Config Agent (LangChain + Claude)
|
|
↓
|
|
🛡️ Custom Validation Pipeline
|
|
↓
|
|
📦 Production-Ready Code
|
|
LangChain Implementation Plan:
|
|
1. Agent Setup:
|
|
pythonfrom langchain.agents import initialize_agent, AgentType
|
|
from langchain.llms import OpenAI
|
|
from langchain.chat_models import ChatAnthropic
|
|
|
|
class EnhancedCodeGenerator:
|
|
def __init__(self):
|
|
# Initialize LangChain agents
|
|
self.frontend_agent = initialize_agent(
|
|
tools=self.frontend_tools,
|
|
llm=OpenAI(model="gpt-4"),
|
|
agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION,
|
|
memory=ConversationSummaryBufferMemory(llm=OpenAI())
|
|
)
|
|
|
|
self.backend_agent = initialize_agent(
|
|
tools=self.backend_tools,
|
|
llm=ChatAnthropic(model="claude-3-5-sonnet-20241022"),
|
|
agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION,
|
|
memory=ConversationSummaryBufferMemory(llm=ChatAnthropic())
|
|
)
|
|
2. Tool Integration:
|
|
pythonfrom langchain.tools import BaseTool
|
|
|
|
class GetCodeDependenciesTool(BaseTool):
|
|
name = "get_code_dependencies"
|
|
description = "Get all dependencies for a code entity from knowledge graph"
|
|
|
|
def _run(self, entity_name: str) -> str:
|
|
# Custom Neo4j query
|
|
dependencies = self.knowledge_graph.get_dependencies(entity_name)
|
|
return json.dumps(dependencies)
|
|
|
|
class ValidateCodeConsistencyTool(BaseTool):
|
|
name = "validate_code_consistency"
|
|
description = "Validate that new code doesn't break existing code"
|
|
|
|
def _run(self, new_code: str, entity_type: str) -> str:
|
|
# Custom validation logic
|
|
validation_result = self.validator.validate_comprehensive(new_code)
|
|
return json.dumps(validation_result)
|
|
3. Memory Management:
|
|
python# LangChain memory for persistent context
|
|
memory = ConversationSummaryBufferMemory(
|
|
llm=ChatAnthropic(),
|
|
max_token_limit=2000,
|
|
return_messages=True,
|
|
memory_key="chat_history"
|
|
)
|
|
|
|
# Custom context augmentation
|
|
async def get_enhanced_context(self, task):
|
|
# LangChain memory
|
|
langchain_history = self.memory.chat_memory.messages
|
|
|
|
# Custom vector context
|
|
vector_context = await self.vector_manager.get_relevant_context(task)
|
|
|
|
# Custom knowledge graph context
|
|
graph_context = await self.knowledge_graph.get_dependencies(task.entity)
|
|
|
|
# Combine all contexts
|
|
return {
|
|
"conversation_history": langchain_history,
|
|
"vector_context": vector_context,
|
|
"graph_context": graph_context
|
|
}
|
|
Dependencies to Add:
|
|
bash# Enhanced requirements.txt
|
|
langchain==0.1.0
|
|
langchain-anthropic==0.1.0
|
|
langchain-openai==0.1.0
|
|
langchain-community==0.0.10
|
|
chromadb==0.4.18
|
|
neo4j==5.15.0
|
|
Benefits of LangChain Integration:
|
|
|
|
🔧 Standardized Agent Interface - Consistent tool calling across agents
|
|
🧠 Built-in Memory Management - Automatic context summarization
|
|
🔄 Chain Orchestration - Sequential and parallel task execution
|
|
📝 Prompt Templates - Dynamic, context-aware prompts
|
|
🛠️ Tool Ecosystem - Rich set of pre-built tools
|
|
📊 Observability - Built-in logging and tracing
|
|
|
|
Why Hybrid Approach (LangChain + Custom):
|
|
|
|
LangChain strengths: Agent orchestration, memory, standardization
|
|
Custom strengths: Enterprise validation, knowledge graphs, performance
|
|
Best of both: Leverage LangChain's ecosystem while maintaining control over critical components
|
|
|
|
Updated Service Architecture:
|
|
python# services/code-generator/src/main.py
|
|
class LangChainEnhancedCodeGenerator:
|
|
def __init__(self):
|
|
# LangChain components
|
|
self.agents = self.initialize_langchain_agents()
|
|
self.memory = ConversationSummaryBufferMemory()
|
|
self.tools = self.setup_custom_tools()
|
|
|
|
# Custom components
|
|
self.knowledge_graph = CustomKnowledgeGraph()
|
|
self.vector_context = CustomVectorManager()
|
|
self.validator = CustomCodeValidator()
|
|
This hybrid approach gives us the best of both worlds: LangChain's proven agent orchestration with our custom enterprise-grade components for code consistency and knowledge management.
|
|
Updated Resume Point: Implement enhanced Code Generator using LangChain for agent orchestration + custom Knowledge Graph/Vector DB for enterprise-grade code consistency that ensures AI never breaks its own code. |