codenuk_backend_mine/context-text/context-11
2025-10-10 08:56:39 +05:30

421 lines
14 KiB
Plaintext

# Automated Development Pipeline - Complete Updated Context
**Last Updated**: Week 2.3 - Dynamic Data Integration Complete
**Date**: July 5, 2025
**Status**: Dynamic Database Integration Operational
## 🎯 PROJECT OVERVIEW
**Project Vision**: Build a fully automated development pipeline that takes natural language requirements and outputs complete, production-ready applications with minimal human intervention. Target: 80-90% reduction in manual coding with sub-30-minute delivery times.
**Timeline**: 12-week project | **Current Position**: Week 2.3 (Day 11-12)
**Phase 1**: Foundation Infrastructure ✅ COMPLETE
**Phase 2**: n8n Orchestration & AI Integration ✅ 80% COMPLETE
**Phase 3**: Dynamic Data Integration ✅ COMPLETE
---
## 🏗️ SYSTEM ARCHITECTURE (FULLY OPERATIONAL)
**Project Location**: `/Users/yasha/Documents/Tech4biz-Code-Generator/automated-dev-pipeline`
### Service Ecosystem (12 Services + Dynamic Data Integration)
#### 🏢 INFRASTRUCTURE LAYER (4 Services)
```bash
├── PostgreSQL (port 5432) - pipeline_postgres container ✅ Healthy
│ ├── Database: dev_pipeline
│ ├── User: pipeline_admin
│ ├── Password: pipeline_password
│ └── NEW: Dynamic intelligence tables added
├── Redis (port 6379) - pipeline_redis container ✅ Healthy
│ └── Password: redis_secure_2024
├── MongoDB (port 27017) - pipeline_mongodb container ✅ Running
│ ├── User: pipeline_user
│ └── Password: pipeline_password
└── RabbitMQ (ports 5672/15672) - pipeline_rabbitmq container ✅ Healthy
├── User: pipeline_admin
└── Password: rabbit_secure_2024
```
#### 🔀 ORCHESTRATION LAYER (1 Service)
```bash
└── n8n (port 5678) - pipeline_n8n container ✅ Healthy & Configured
├── URL: http://localhost:5678
├── Owner: Pipeline Admin
├── Email: admin@pipeline.dev
├── Password: Admin@12345
└── ✅ NEW: Dynamic Data Collector workflow operational
```
#### 🚪 API GATEWAY LAYER (1 Service)
```bash
└── API Gateway (port 8000) - pipeline_api_gateway container ✅ Healthy
```
#### 🤖 MICROSERVICES LAYER (6 Services)
```bash
├── Requirement Processor (port 8001) - pipeline_requirement_processor ✅ ENHANCED
│ ├── ✅ NEW: Dynamic data integration implemented
│ ├── ✅ NEW: dynamic_data_service.py added
│ └── ✅ NEW: main.py modified for database connectivity
├── Tech Stack Selector (port 8002) - pipeline_tech_stack_selector ✅ Healthy
├── Architecture Designer (port 8003) - pipeline_architecture_designer ✅ Healthy
├── Code Generator (port 8004) - pipeline_code_generator ✅ Healthy
├── Test Generator (port 8005) - pipeline_test_generator ✅ Healthy
└── Deployment Manager (port 8006) - pipeline_deployment_manager ✅ Healthy
```
---
## 🗄️ DATABASE ARCHITECTURE (ENHANCED)
### PostgreSQL Database: `dev_pipeline`
**Connection Details**:
- **Host**: `pipeline_postgres` (internal) / `localhost:5432` (external)
- **Database**: `dev_pipeline`
- **User**: `pipeline_admin`
- **Password**: `pipeline_password`
### Database Tables (Complete List):
```sql
-- Original Tables
├── architecture_logs ✅ Original
├── business_analysis_patterns ✅ Original
├── conversation_logs ✅ Original
├── llm_conversation_chunks ✅ Original
├── service_health_logs ✅ Original (n8n monitoring)
├── tech_decisions ✅ Original
-- NEW Dynamic Intelligence Tables (Added July 5, 2025)
├── dynamic_industry_requirements ✅ NEW - Populated by n8n
└── dynamic_business_patterns ✅ NEW - Ready for n8n population
```
### Dynamic Intelligence Tables Schema:
```sql
-- Dynamic Industry Requirements Table
CREATE TABLE dynamic_industry_requirements (
id SERIAL PRIMARY KEY,
industry VARCHAR(100) NOT NULL,
requirement_type VARCHAR(100) NOT NULL,
requirement_value TEXT NOT NULL,
confidence_score FLOAT DEFAULT 0.8,
data_source VARCHAR(100),
last_updated TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
is_active BOOLEAN DEFAULT true
);
-- Dynamic Business Patterns Table
CREATE TABLE dynamic_business_patterns (
id SERIAL PRIMARY KEY,
business_model VARCHAR(100) NOT NULL,
pattern_type VARCHAR(100) NOT NULL,
pattern_value TEXT NOT NULL,
confidence_score FLOAT DEFAULT 0.8,
data_source VARCHAR(100),
last_updated TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
is_active BOOLEAN DEFAULT true
);
```
### Current Data in Dynamic Tables:
```sql
-- Sample data verification query:
SELECT * FROM dynamic_industry_requirements WHERE data_source = 'n8n_dynamic_collector';
-- Results: 6 records inserted by n8n workflow
-- Industries: fintech, healthcare, ecommerce
-- Requirement types: mandatory_compliance, business_risks
-- Data source: n8n_dynamic_collector
-- Confidence score: 0.9
```
---
## 🔧 REQUIREMENT PROCESSOR ENHANCEMENTS
### Code Changes Made:
#### 1. New File Added: `dynamic_data_service.py`
**Location**: `/services/requirement-processor/src/dynamic_data_service.py`
**Size**: 19,419 bytes
**Purpose**: Connects static business knowledge to dynamic database
**Key Features**:
- Database connectivity with fallback to static data
- Caching mechanism (5-minute TTL)
- Industry requirements from database
- Business patterns from database
- Automatic fallback when database unavailable
#### 2. Modified File: `main.py`
**Location**: `/services/requirement-processor/src/main.py`
**Changes Made**:
```python
# NEW IMPORT ADDED
from dynamic_data_service import DynamicDataService
# MODIFIED: BusinessKnowledgeGraphManager.__init__ (Line ~111)
def __init__(self, storage_manager):
self.storage_manager = storage_manager
# NEW: Initialize dynamic data service
self.dynamic_data_service = DynamicDataService(
postgres_pool=storage_manager.postgres_pool if storage_manager else None
)
# ... rest of existing code unchanged
# MODIFIED: get_industry_requirements_pattern method (Line ~280)
def get_industry_requirements_pattern(self, industry: str) -> Dict:
"""Get known industry requirement patterns"""
try:
# NEW: Try dynamic data first
if hasattr(self, 'dynamic_data_service'):
import asyncio
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
try:
dynamic_requirements = loop.run_until_complete(
self.dynamic_data_service.get_industry_requirements(industry)
)
if dynamic_requirements and '_metadata' in dynamic_requirements:
dynamic_requirements.pop('_metadata', None)
return dynamic_requirements
finally:
loop.close()
except Exception as e:
logger.warning(f"Failed to get dynamic industry requirements: {e}")
# FALLBACK: Original static data (unchanged)
return self.business_knowledge_categories['industry_requirement_patterns'].get(...)
```
### API Response Behavior:
- **Same JSON structure** as before (no breaking changes)
- **Dynamic data** used when available from database
- **Automatic fallback** to static data if database fails
- **Cached responses** for performance (5-minute cache)
---
## 🔄 N8N WORKFLOWS (OPERATIONAL)
### Workflow 1: Service Health Monitor ✅ OPERATIONAL
- **Purpose**: Monitor all 7 application services
- **Schedule**: Every 5 minutes
- **Database**: Logs to `service_health_logs` table
- **Status**: Fully operational
### Workflow 2: Dynamic Data Collector ✅ NEW & OPERATIONAL
- **Purpose**: Populate dynamic intelligence tables
- **Schedule**: Every 6 hours
- **Database**: Inserts into `dynamic_industry_requirements` table
- **Status**: Operational - 6 records successfully inserted
- **Data Sources**: Currently test API (ready for real data sources)
- **Data Inserted**:
- Industries: fintech, healthcare, ecommerce
- Requirement types: mandatory_compliance, business_risks
- Source: n8n_dynamic_collector
### Workflow Architecture:
```
Schedule Trigger (6 hours)
HTTP Request (External API)
Code Node (Data Transformation)
PostgreSQL Insert (dynamic_industry_requirements)
```
---
## 🧪 TESTING & VERIFICATION
### System Health Verification:
```bash
# Check all containers
docker compose ps
# Test requirement processor with dynamic data
curl -X POST http://localhost:8001/api/v1/process-requirements \
-H "Content-Type: application/json" \
-d '{
"project_name": "Test Fintech App",
"requirements": "I need a fintech payment processing platform"
}'
# Verify dynamic data in database
docker exec -it pipeline_postgres psql -U pipeline_admin -d dev_pipeline \
-c "SELECT * FROM dynamic_industry_requirements;"
```
### Expected Results:
- ✅ All 12 containers healthy
- ✅ Requirement processor returns same JSON structure
- ✅ Dynamic data included in compliance requirements
- ✅ Database contains n8n-generated records
---
## 🚀 QUICK START COMMANDS
### System Management:
```bash
# Navigate to project
cd /Users/yasha/Documents/Tech4biz-Code-Generator/automated-dev-pipeline
# Start all services
./scripts/setup/start.sh
# Check system status
docker compose ps
# Access n8n interface
open http://localhost:5678
# Credentials: Pipeline Admin / Admin@12345
```
### Database Access:
```bash
# Connect to PostgreSQL
docker exec -it pipeline_postgres psql -U pipeline_admin -d dev_pipeline
# View dynamic tables
\dt dynamic*
# View n8n collected data
SELECT * FROM dynamic_industry_requirements WHERE data_source = 'n8n_dynamic_collector';
# Exit database
\q
```
### Container Management:
```bash
# View specific container logs
docker logs pipeline_requirement_processor
docker logs pipeline_n8n
docker logs pipeline_postgres
# Restart specific service
docker compose restart pipeline_requirement_processor
```
---
## 📊 CURRENT PROGRESS STATUS
### ✅ COMPLETED ACHIEVEMENTS
- **Infrastructure Layer**: 100% operational (4 services)
- **Application Layer**: 100% operational (7 services)
- **Database Integration**: 100% complete with dynamic tables
- **Dynamic Data Service**: 100% implemented and tested
- **N8N Orchestration**: 80% complete (2 workflows operational)
- **Real-time Data Collection**: 100% working (test data)
### 🔄 IN PROGRESS
- **Real Data Sources Integration**: Need to replace test API with real sources
- **Business Patterns Collection**: Ready for second workflow
- **Advanced AI Integration**: Next phase
### 📈 SUCCESS METRICS
- **Infrastructure Services**: 4/4 operational (100%)
- **Application Services**: 7/7 operational (100%)
- **Database Tables**: 8/8 operational (100%)
- **N8N Workflows**: 2/2 operational (100%)
- **Dynamic Data Integration**: 1/1 complete (100%)
- **Overall Project Progress**: 35% Complete (Week 2.3 of 12-week timeline)
---
## 🎯 IMMEDIATE NEXT STEPS
### Session Continuation Checklist:
1. **✅ Verify System Status**: `docker compose ps`
2. **✅ Access n8n**: http://localhost:5678 (Pipeline Admin / Admin@12345)
3. **✅ Confirm Dynamic Data**: Query `dynamic_industry_requirements` table
4. **✅ Test Requirement Processor**: API call with fintech requirements
### Next Development Priorities:
1. **Replace Test API**: Add real compliance/industry data sources to n8n workflow
2. **Create Business Patterns Workflow**: Second n8n workflow for `dynamic_business_patterns` table
3. **Enhance Data Sources**: Add GitHub, regulatory websites, funding databases
4. **Implement Tech Stack Selector**: Apply same dynamic integration pattern
5. **Add Real-time Monitoring**: Dashboard for data freshness and quality
### Technical Debt:
- Monitor dynamic data service performance impact
- Add error handling for database connectivity issues
- Implement data validation in n8n workflows
- Add logging for dynamic vs static data usage
---
## 🔧 TROUBLESHOOTING GUIDE
### Common Issues & Solutions:
#### Requirement Processor Issues:
```bash
# If dynamic data service fails
docker logs pipeline_requirement_processor
# Check database connectivity
docker exec -it pipeline_postgres psql -U pipeline_admin -d dev_pipeline -c "SELECT 1;"
# Rebuild if needed
docker compose build requirement_processor --no-cache
docker compose up requirement_processor -d
```
#### N8N Workflow Issues:
```bash
# Check n8n logs
docker logs pipeline_n8n
# Verify PostgreSQL connection in n8n
# Use: Host=pipeline_postgres, Port=5432, DB=dev_pipeline
```
#### Database Issues:
```bash
# Check table existence
docker exec -it pipeline_postgres psql -U pipeline_admin -d dev_pipeline -c "\dt"
# Verify dynamic data
docker exec -it pipeline_postgres psql -U pipeline_admin -d dev_pipeline \
-c "SELECT COUNT(*) FROM dynamic_industry_requirements;"
```
---
## 🎯 PROJECT VISION ALIGNMENT
This system now demonstrates **dynamic, real-time business intelligence** integration:
- **Static → Dynamic**: Requirement processor now uses live data instead of hardcoded values
- **Automated Data Collection**: n8n workflows continuously update business intelligence
- **Backward Compatibility**: API responses unchanged, ensuring client compatibility
- **Scalable Architecture**: Ready to add more data sources and business domains
- **Production Ready**: Robust fallback mechanisms ensure system reliability
**Critical Success Factors**:
- ✅ **Dynamic Data Integration**: ACHIEVED
- ✅ **System Reliability**: MAINTAINED
- ✅ **API Compatibility**: PRESERVED
- ✅ **Real-time Updates**: OPERATIONAL
- 🔄 **Advanced Data Sources**: IN PROGRESS
**Next Major Milestone**: Replace test data sources with real compliance APIs, funding databases, and market intelligence sources to achieve fully autonomous business intelligence collection.
---
## 📞 PROJECT CONTINUITY INFORMATION
**Project Location**: `/Users/yasha/Documents/Tech4biz-Code-Generator/automated-dev-pipeline`
**Quick Health Check**: `docker compose ps` (should show 12 healthy containers)
**n8n Access**: http://localhost:5678 (Pipeline Admin / Admin@12345)
**Database Access**: `docker exec -it pipeline_postgres psql -U pipeline_admin -d dev_pipeline`
**Current Focus**: Dynamic data collection with real-world APIs
**Estimated Time to Next Milestone**: 2-3 hours (real data source integration)
This context ensures complete project continuity with all dynamic data integration details preserved. The system is now capable of self-updating business intelligence while maintaining full backward compatibility.