# Frontend AI Analysis Integration ## Overview This document describes the complete integration of AI analysis functionality into the frontend, including real-time monitoring, progress tracking, and API gateway communication. ## Architecture ``` Frontend → API Gateway → AI Analysis Service → Git Integration Service ↓ ↓ ↓ ↓ Real-time UI → HTTP API → Repository Info → Local File Access ↓ ↓ ↓ ↓ Progress → WebSocket → Analysis → Direct File System Monitoring → Stream → Processing → Access ``` ## Components Implemented ### 1. API Routes (`/app/api/ai/repository/`) #### `/analyze/route.ts` - **Purpose**: Start AI analysis for a repository - **Method**: POST - **Input**: `{ repository_id, user_id, output_format, max_files }` - **Output**: Analysis result with stats and report path #### `/stream/route.ts` - **Purpose**: Real-time streaming of analysis progress - **Method**: GET - **Input**: `repository_id`, `user_id` as query parameters - **Output**: Server-Sent Events stream with progress updates #### `/report/[filename]/route.ts` - **Purpose**: Download analysis reports - **Method**: GET - **Input**: Filename as URL parameter - **Output**: File download with appropriate headers ### 2. React Hooks (`/hooks/useAIAnalysis.ts`) #### `useAIAnalysis` Hook - **State Management**: Analysis progress, results, errors - **Functions**: - `startAnalysis()`: Initiates analysis with options - `stopAnalysis()`: Stops ongoing analysis - `resetAnalysis()`: Resets all state - **Real-time Updates**: Uses EventSource for streaming updates ### 3. UI Components (`/components/ai/`) #### `AnalysisMonitor.tsx` - **Real-time Progress**: Shows analysis progress with percentage - **Status Indicators**: Loading, error, and completion states - **Statistics Display**: File counts, quality scores, languages - **Download Functionality**: Direct report download #### `AnalysisModal.tsx` - **Modal Interface**: Full-screen analysis interface - **Progress Tracking**: Real-time progress updates - **Error Handling**: User-friendly error messages - **Result Display**: Comprehensive analysis results ### 4. Integration Points #### GitHub Repos Page (`/app/github/repos/page.tsx`) - **AI Analysis Button**: Triggers analysis modal - **Repository Context**: Passes repository ID and name - **User Context**: Handles user authentication - **Modal Integration**: Seamless modal experience ## Real-time Features ### 1. Progress Monitoring ```typescript interface AnalysisProgress { current_chunk: number total_chunks: number processed_files: number total_files: number percentage: number } ``` ### 2. Status Updates - **Ready**: Analysis not started - **Analyzing**: In progress with real-time updates - **Complete**: Analysis finished with results - **Error**: Analysis failed with error message ### 3. Statistics Display - **File Metrics**: Total files, lines of code - **Quality Scores**: Overall code quality rating - **Language Breakdown**: Programming languages detected - **Quality Distribution**: High/medium/low quality files ## API Gateway Integration ### 1. Service Communication All communication flows through the API gateway: ``` Frontend → Next.js API Routes → External Services ``` ### 2. Environment Configuration ```env # Service URLs GIT_INTEGRATION_SERVICE_URL=http://git-integration:8012 AI_ANALYSIS_SERVICE_URL=http://ai-analysis-service:8022 # Public URLs (for client-side) NEXT_PUBLIC_GIT_INTEGRATION_SERVICE_URL=http://localhost:8012 NEXT_PUBLIC_AI_ANALYSIS_SERVICE_URL=http://localhost:8022 ``` ### 3. Error Handling - **Service Unavailable**: Graceful fallback messages - **Network Errors**: Retry mechanisms - **Analysis Failures**: User-friendly error display ## User Experience Flow ### 1. Analysis Initiation 1. User clicks "AI Analysis" button on repository card 2. Modal opens with analysis interface 3. User can start analysis or close modal ### 2. Real-time Progress 1. Analysis starts with progress indicator 2. Real-time updates show: - Files processed - Chunks processed - Percentage complete 3. User can stop analysis if needed ### 3. Results Display 1. Analysis completes with success indicator 2. Statistics displayed: - Total files and lines - Quality score - Language breakdown - Quality distribution 3. Download button for report ### 4. Error Handling 1. Error messages displayed clearly 2. Retry options provided 3. User can close and try again ## Technical Implementation ### 1. State Management ```typescript const { isAnalyzing, // Analysis in progress progress, // Real-time progress result, // Analysis results error, // Error messages startAnalysis, // Start function stopAnalysis, // Stop function resetAnalysis // Reset function } = useAIAnalysis() ``` ### 2. Real-time Updates ```typescript // EventSource for streaming updates const eventSource = new EventSource(streamUrl) eventSource.onmessage = (event) => { const data = JSON.parse(event.data) // Update progress, handle completion, etc. } ``` ### 3. File Download ```typescript const handleDownloadReport = async () => { const response = await fetch(`/api/ai/repository/report/${filename}`) const blob = await response.blob() // Create download link and trigger download } ``` ## Security Considerations ### 1. Authentication - User ID passed through all requests - JWT tokens for service authentication - Repository access validation ### 2. Input Validation - Repository ID validation - User ID validation - File size limits - Content type validation ### 3. Error Handling - No sensitive information in error messages - Graceful degradation on service failures - User-friendly error display ## Performance Optimizations ### 1. Caching - Analysis results cached for 24 hours - File content hashing for change detection - Redis-based caching system ### 2. Rate Limiting - 90 requests per minute to Claude API - Request queuing and throttling - Progress updates to prevent timeouts ### 3. Content Optimization - Large files truncated intelligently - Important code sections preserved - Token limit compliance ## Deployment Considerations ### 1. Environment Variables ```env # Required for production GIT_INTEGRATION_SERVICE_URL=https://git-integration.yourdomain.com AI_ANALYSIS_SERVICE_URL=https://ai-analysis.yourdomain.com ``` ### 2. CORS Configuration ```typescript // API routes handle CORS app.add_middleware( CORSMiddleware, allow_origins=["*"], allow_credentials=True, allow_methods=["*"], allow_headers=["*"], ) ``` ### 3. Error Monitoring - Console logging for debugging - Error tracking for production - Performance monitoring ## Testing ### 1. Unit Tests - Hook functionality testing - Component rendering tests - API route testing ### 2. Integration Tests - End-to-end analysis flow - Real-time update testing - Error scenario testing ### 3. Performance Tests - Large repository handling - Concurrent analysis testing - Memory usage monitoring ## Future Enhancements ### 1. Advanced Features - Batch analysis for multiple repositories - Analysis scheduling - Custom analysis parameters ### 2. UI Improvements - Analysis history - Comparison between repositories - Advanced filtering and sorting ### 3. Performance - Background processing - Queue management - Resource optimization This integration provides a complete, production-ready AI analysis system with real-time monitoring, progress tracking, and seamless user experience through the API gateway architecture.