const logger = require('../utils/logger'); const database = require('../config/database'); const redis = require('../config/redis'); const healingService = require('./healingService'); const alertService = require('./alertService'); class AIAgentService { constructor() { this.learningRate = parseFloat(process.env.AI_LEARNING_RATE) || 0.1; this.anomalyThreshold = parseFloat(process.env.AI_THRESHOLD_ANOMALY) || 0.8; this.healingEnabled = process.env.AI_HEALING_ENABLED === 'true'; this.deviceModels = new Map(); this.isInitialized = false; } async initialize() { try { await this.loadDeviceModels(); await this.setupPeriodicAnalysis(); this.isInitialized = true; logger.info('AI Agent service initialized successfully'); } catch (error) { logger.error('Failed to initialize AI Agent service:', error); throw error; } } async loadDeviceModels() { try { // Load device-specific AI models from database const devices = await database.query('SELECT id, device_type, ai_model_config FROM devices WHERE ai_model_config IS NOT NULL'); for (const device of devices) { if (device.ai_model_config) { const config = JSON.parse(device.ai_model_config); this.deviceModels.set(device.id, { deviceType: device.device_type, config: config, lastUpdated: new Date() }); } } logger.info(`Loaded AI models for ${devices.length} devices`); } catch (error) { logger.error('Failed to load device models:', error); } } async setupPeriodicAnalysis() { // Run periodic analysis every 5 minutes setInterval(async () => { await this.runPeriodicAnalysis(); }, 5 * 60 * 1000); } async processDeviceData(deviceId, data, timestamp) { try { const startTime = Date.now(); // Analyze data for anomalies const anomalyScore = await this.detectAnomalies(deviceId, data); // Generate insights const insights = await this.generateInsights(deviceId, data, timestamp); // Check for optimization opportunities const optimizations = await this.findOptimizations(deviceId, data); // Update device model await this.updateDeviceModel(deviceId, data, anomalyScore); // Generate suggestions const suggestions = await this.generateSuggestions(deviceId, data, insights, optimizations); // Store analysis results await this.storeAnalysisResults(deviceId, { anomalyScore, insights, optimizations, suggestions, timestamp }); const processingTime = Date.now() - startTime; logger.logAIAction('device_data_analysis', { deviceId, anomalyScore, insightsCount: insights.length, optimizationsCount: optimizations.length, suggestionsCount: suggestions.length }, anomalyScore); logger.logPerformance('ai_data_processing', processingTime, { deviceId, dataSize: JSON.stringify(data).length }); } catch (error) { logger.error('Error processing device data with AI:', error); } } async detectAnomalies(deviceId, data) { try { // Get historical data for comparison const historicalData = await this.getHistoricalData(deviceId, 100); if (historicalData.length < 10) { return 0.5; // Neutral score if insufficient data } // Calculate statistical measures const values = historicalData.map(d => this.extractNumericValues(d.raw_data)).flat(); const mean = values.reduce((a, b) => a + b, 0) / values.length; const variance = values.reduce((a, b) => a + Math.pow(b - mean, 2), 0) / values.length; const stdDev = Math.sqrt(variance); // Calculate anomaly score for current data const currentValues = this.extractNumericValues(data); const anomalyScores = currentValues.map(value => { const zScore = Math.abs((value - mean) / stdDev); return Math.min(zScore / 3, 1); // Normalize to 0-1 }); const avgAnomalyScore = anomalyScores.reduce((a, b) => a + b, 0) / anomalyScores.length; // Trigger alert if anomaly score is high if (avgAnomalyScore > this.anomalyThreshold) { await alertService.createAlert({ deviceId, type: 'anomaly_detected', severity: avgAnomalyScore > 0.9 ? 'critical' : 'warning', message: `Anomaly detected in device ${deviceId} with score ${avgAnomalyScore.toFixed(3)}`, data: { anomalyScore: avgAnomalyScore, values: currentValues } }); } return avgAnomalyScore; } catch (error) { logger.error('Error detecting anomalies:', error); return 0.5; } } async generateInsights(deviceId, data, timestamp) { try { const insights = []; // Analyze data patterns const patterns = await this.analyzePatterns(deviceId, data); if (patterns.length > 0) { insights.push({ type: 'pattern_detected', description: `Detected ${patterns.length} new patterns in device behavior`, patterns: patterns }); } // Analyze performance trends const trends = await this.analyzeTrends(deviceId, data); if (trends.length > 0) { insights.push({ type: 'trend_detected', description: `Identified ${trends.length} performance trends`, trends: trends }); } // Analyze efficiency const efficiency = await this.analyzeEfficiency(deviceId, data); if (efficiency.score < 0.7) { insights.push({ type: 'efficiency_issue', description: `Device efficiency is ${(efficiency.score * 100).toFixed(1)}%`, recommendations: efficiency.recommendations }); } return insights; } catch (error) { logger.error('Error generating insights:', error); return []; } } async findOptimizations(deviceId, data) { try { const optimizations = []; // Check for energy optimization opportunities const energyOpt = await this.checkEnergyOptimization(deviceId, data); if (energyOpt.opportunity) { optimizations.push({ type: 'energy_optimization', description: energyOpt.description, potentialSavings: energyOpt.savings, action: energyOpt.action }); } // Check for performance optimization const perfOpt = await this.checkPerformanceOptimization(deviceId, data); if (perfOpt.opportunity) { optimizations.push({ type: 'performance_optimization', description: perfOpt.description, improvement: perfOpt.improvement, action: perfOpt.action }); } // Check for maintenance optimization const maintOpt = await this.checkMaintenanceOptimization(deviceId, data); if (maintOpt.opportunity) { optimizations.push({ type: 'maintenance_optimization', description: maintOpt.description, benefit: maintOpt.benefit, action: maintOpt.action }); } return optimizations; } catch (error) { logger.error('Error finding optimizations:', error); return []; } } async generateSuggestions(deviceId, data, insights, optimizations) { try { const suggestions = []; // Generate suggestions based on insights for (const insight of insights) { const suggestion = await this.createSuggestionFromInsight(deviceId, insight); if (suggestion) { suggestions.push(suggestion); } } // Generate suggestions based on optimizations for (const optimization of optimizations) { const suggestion = await this.createSuggestionFromOptimization(deviceId, optimization); if (suggestion) { suggestions.push(suggestion); } } // Generate proactive suggestions const proactiveSuggestions = await this.generateProactiveSuggestions(deviceId, data); suggestions.push(...proactiveSuggestions); // Store suggestions in database for (const suggestion of suggestions) { await this.storeSuggestion(deviceId, suggestion); } return suggestions; } catch (error) { logger.error('Error generating suggestions:', error); return []; } } async createSuggestionFromInsight(deviceId, insight) { try { const suggestion = { deviceId, type: 'ai_insight', title: `Action based on ${insight.type}`, description: insight.description, priority: insight.type === 'efficiency_issue' ? 'high' : 'medium', category: 'optimization', confidence: 0.8, actions: [], created_at: new Date() }; // Add specific actions based on insight type switch (insight.type) { case 'efficiency_issue': suggestion.actions = insight.recommendations; break; case 'pattern_detected': suggestion.actions = ['Monitor pattern evolution', 'Adjust thresholds if needed']; break; case 'trend_detected': suggestion.actions = ['Review trend direction', 'Plan preventive measures']; break; } return suggestion; } catch (error) { logger.error('Error creating suggestion from insight:', error); return null; } } async createSuggestionFromOptimization(deviceId, optimization) { try { const suggestion = { deviceId, type: 'ai_optimization', title: optimization.description, description: `AI detected optimization opportunity: ${optimization.description}`, priority: 'medium', category: 'optimization', confidence: 0.7, actions: [optimization.action], metadata: { optimizationType: optimization.type, potentialBenefit: optimization.potentialSavings || optimization.improvement || optimization.benefit }, created_at: new Date() }; return suggestion; } catch (error) { logger.error('Error creating suggestion from optimization:', error); return null; } } async generateProactiveSuggestions(deviceId, data) { try { const suggestions = []; // Check device health const health = await this.assessDeviceHealth(deviceId, data); if (health.score < 0.6) { suggestions.push({ deviceId, type: 'health_warning', title: 'Device Health Alert', description: `Device health is at ${(health.score * 100).toFixed(1)}%. Consider maintenance.`, priority: 'high', category: 'maintenance', confidence: 0.9, actions: ['Schedule maintenance', 'Check device logs', 'Review recent alerts'], created_at: new Date() }); } // Check for predictive maintenance const maintenance = await this.predictMaintenance(deviceId, data); if (maintenance.needed) { suggestions.push({ deviceId, type: 'predictive_maintenance', title: 'Predictive Maintenance Recommended', description: `Maintenance recommended within ${maintenance.timeframe} days`, priority: 'medium', category: 'maintenance', confidence: maintenance.confidence, actions: ['Schedule maintenance', 'Order parts if needed'], metadata: { timeframe: maintenance.timeframe }, created_at: new Date() }); } return suggestions; } catch (error) { logger.error('Error generating proactive suggestions:', error); return []; } } async storeSuggestion(deviceId, suggestion) { try { await database.query( `INSERT INTO ai_suggestions (device_id, type, title, description, priority, category, confidence, actions, metadata, created_at) VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?, ?)`, [ deviceId, suggestion.type, suggestion.title, suggestion.description, suggestion.priority, suggestion.category, suggestion.confidence, JSON.stringify(suggestion.actions), JSON.stringify(suggestion.metadata || {}), suggestion.created_at ] ); } catch (error) { logger.error('Failed to store suggestion:', error); } } async runPeriodicAnalysis() { try { logger.info('Running periodic AI analysis...'); // Get all active devices const devices = await database.query('SELECT id FROM devices WHERE status = "active"'); for (const device of devices) { // Get recent data for analysis const recentData = await database.query( 'SELECT * FROM device_data WHERE device_id = ? ORDER BY timestamp DESC LIMIT 10', [device.id] ); if (recentData.length > 0) { // Run comprehensive analysis await this.runComprehensiveAnalysis(device.id, recentData); } } logger.info('Periodic AI analysis completed'); } catch (error) { logger.error('Error in periodic analysis:', error); } } async runComprehensiveAnalysis(deviceId, data) { try { // Analyze device behavior patterns const behaviorPatterns = await this.analyzeBehaviorPatterns(deviceId, data); // Check for system-wide optimizations const systemOptimizations = await this.findSystemOptimizations(deviceId, data); // Generate long-term recommendations const longTermRecommendations = await this.generateLongTermRecommendations(deviceId, data); // Store comprehensive analysis await this.storeComprehensiveAnalysis(deviceId, { behaviorPatterns, systemOptimizations, longTermRecommendations, timestamp: new Date() }); } catch (error) { logger.error('Error in comprehensive analysis:', error); } } // Helper methods extractNumericValues(data) { const values = []; const extract = (obj) => { for (const key in obj) { if (typeof obj[key] === 'number') { values.push(obj[key]); } else if (typeof obj[key] === 'object' && obj[key] !== null) { extract(obj[key]); } } }; extract(data); return values; } async getHistoricalData(deviceId, limit) { try { return await database.query( 'SELECT raw_data FROM device_data WHERE device_id = ? ORDER BY timestamp DESC LIMIT ?', [deviceId, limit] ); } catch (error) { logger.error('Error getting historical data:', error); return []; } } async updateDeviceModel(deviceId, data, anomalyScore) { try { // Update device model with new data const model = this.deviceModels.get(deviceId) || { deviceType: 'unknown', config: {}, lastUpdated: new Date() }; // Update model parameters based on new data model.lastUpdated = new Date(); model.lastAnomalyScore = anomalyScore; this.deviceModels.set(deviceId, model); // Store updated model in database await database.query( 'UPDATE devices SET ai_model_config = ?, updated_at = NOW() WHERE id = ?', [JSON.stringify(model), deviceId] ); } catch (error) { logger.error('Error updating device model:', error); } } async storeAnalysisResults(deviceId, results) { try { await database.query( `INSERT INTO ai_analysis_results (device_id, anomaly_score, insights, optimizations, suggestions, timestamp, created_at) VALUES (?, ?, ?, ?, ?, ?, NOW())`, [ deviceId, results.anomalyScore, JSON.stringify(results.insights), JSON.stringify(results.optimizations), JSON.stringify(results.suggestions), results.timestamp ] ); } catch (error) { logger.error('Failed to store analysis results:', error); } } // Placeholder methods for complex AI operations async analyzePatterns(deviceId, data) { return []; } async analyzeTrends(deviceId, data) { return []; } async analyzeEfficiency(deviceId, data) { return { score: 0.8, recommendations: [] }; } async checkEnergyOptimization(deviceId, data) { return { opportunity: false }; } async checkPerformanceOptimization(deviceId, data) { return { opportunity: false }; } async checkMaintenanceOptimization(deviceId, data) { return { opportunity: false }; } async assessDeviceHealth(deviceId, data) { return { score: 0.8 }; } async predictMaintenance(deviceId, data) { return { needed: false }; } async analyzeBehaviorPatterns(deviceId, data) { return []; } async findSystemOptimizations(deviceId, data) { return []; } async generateLongTermRecommendations(deviceId, data) { return []; } async storeComprehensiveAnalysis(deviceId, analysis) { } async healthCheck() { try { return { status: this.isInitialized ? 'healthy' : 'not_initialized', message: this.isInitialized ? 'AI Agent service is healthy' : 'Service not initialized', deviceModels: this.deviceModels.size, learningRate: this.learningRate, anomalyThreshold: this.anomalyThreshold, healingEnabled: this.healingEnabled }; } catch (error) { return { status: 'unhealthy', message: 'AI Agent service health check failed', error: error.message }; } } } module.exports = new AIAgentService();