saas-market-analysis-dubai/load_csv_data.py
2025-09-17 03:04:22 +05:30

385 lines
15 KiB
Python
Executable File

#!/usr/bin/env python
"""
CSV Data Loading Script for Dubai Analytics Platform
Loads all CSV data from the sample data directory into the database.
"""
import os
import sys
import django
import pandas as pd
from datetime import datetime
from decimal import Decimal
import uuid
# Add the project directory to Python path
sys.path.append(os.path.dirname(os.path.abspath(__file__)))
# Set Django settings
os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'dubai_analytics.settings')
# Setup Django
django.setup()
from apps.analytics.models import (
Broker, Developer, Project, Valuation, Land, Rent, Transaction, Forecast
)
from apps.users.models import User
from apps.core.models import APIRateLimit, SystemConfiguration
def load_brokers(csv_path):
"""Load brokers data from CSV."""
print("📊 Loading brokers data...")
try:
df = pd.read_csv(csv_path)
print(f" Found {len(df)} broker records")
brokers_created = 0
for _, row in df.iterrows():
broker, created = Broker.objects.get_or_create(
broker_number=row['BROKER_NUMBER'],
defaults={
'broker_name_en': row['BROKER_EN'],
'gender': row.get('GENDER_EN', 'male'),
'license_start_date': pd.to_datetime(row['LICENSE_START_DATE']),
'license_end_date': pd.to_datetime(row['LICENSE_END_DATE']),
'webpage': row.get('WEBPAGE', ''),
'phone': row.get('PHONE', ''),
'fax': row.get('FAX', ''),
'real_estate_number': row.get('REAL_ESTATE_NUMBER', ''),
'real_estate_name_en': row.get('REAL_ESTATE_EN', ''),
}
)
if created:
brokers_created += 1
print(f" ✅ Created {brokers_created} new brokers")
return brokers_created
except Exception as e:
print(f" ❌ Error loading brokers: {e}")
return 0
def load_developers(csv_path):
"""Load developers data from CSV."""
print("🏗️ Loading developers data...")
try:
df = pd.read_csv(csv_path)
print(f" Found {len(df)} developer records")
developers_created = 0
for _, row in df.iterrows():
developer, created = Developer.objects.get_or_create(
developer_number=row['developer_number'],
defaults={
'developer_name_en': row['developer_name_en'],
}
)
if created:
developers_created += 1
print(f" ✅ Created {developers_created} new developers")
return developers_created
except Exception as e:
print(f" ❌ Error loading developers: {e}")
return 0
def load_projects(csv_path):
"""Load projects data from CSV."""
print("🏢 Loading projects data...")
try:
df = pd.read_csv(csv_path)
print(f" Found {len(df)} project records")
projects_created = 0
for _, row in df.iterrows():
# Get or create developer
developer = None
if pd.notna(row.get('developer')):
developer, _ = Developer.objects.get_or_create(
developer_number=row['developer'],
defaults={'developer_name_en': row['developer']}
)
project, created = Project.objects.get_or_create(
project_number=row['project_number'],
defaults={
'project_name_en': row['project_name_en'],
'project_status': row.get('project_status', 'active'),
'area_en': row.get('area_en', ''),
'zone_en': row.get('zone_en', ''),
'developer': developer,
'total_units': row.get('total_units', 0),
'completion_percentage': row.get('completion_percentage', 0),
'launch_date': pd.to_datetime(row['launch_date']) if pd.notna(row.get('launch_date')) else None,
'completion_date': pd.to_datetime(row['completion_date']) if pd.notna(row.get('completion_date')) else None,
}
)
if created:
projects_created += 1
print(f" ✅ Created {projects_created} new projects")
return projects_created
except Exception as e:
print(f" ❌ Error loading projects: {e}")
return 0
def load_valuations(csv_path):
"""Load valuations data from CSV."""
print("💰 Loading valuations data...")
try:
df = pd.read_csv(csv_path)
print(f" Found {len(df)} valuation records")
valuations_created = 0
for _, row in df.iterrows():
valuation, created = Valuation.objects.get_or_create(
valuation_number=row['valuation_number'],
defaults={
'property_type': row.get('property_type', ''),
'area_en': row.get('area_en', ''),
'zone_en': row.get('zone_en', ''),
'valuation_date': pd.to_datetime(row['valuation_date']),
'property_value': Decimal(str(row['property_value'])) if pd.notna(row.get('property_value')) else None,
'land_value': Decimal(str(row['land_value'])) if pd.notna(row.get('land_value')) else None,
'building_value': Decimal(str(row['building_value'])) if pd.notna(row.get('building_value')) else None,
'total_area': row.get('total_area', 0),
'land_area': row.get('land_area', 0),
'building_area': row.get('building_area', 0),
}
)
if created:
valuations_created += 1
print(f" ✅ Created {valuations_created} new valuations")
return valuations_created
except Exception as e:
print(f" ❌ Error loading valuations: {e}")
return 0
def load_lands(csv_path):
"""Load lands data from CSV."""
print("🏞️ Loading lands data...")
try:
df = pd.read_csv(csv_path)
print(f" Found {len(df)} land records")
lands_created = 0
for _, row in df.iterrows():
land, created = Land.objects.get_or_create(
land_number=row['land_number'],
defaults={
'land_type': row.get('land_type', ''),
'area_en': row.get('area_en', ''),
'zone_en': row.get('zone_en', ''),
'actual_area': Decimal(str(row['actual_area'])) if pd.notna(row.get('actual_area')) else None,
'is_freehold': row.get('is_freehold', False),
'land_use': row.get('land_use', ''),
'plot_number': row.get('plot_number', ''),
'street_number': row.get('street_number', ''),
}
)
if created:
lands_created += 1
print(f" ✅ Created {lands_created} new lands")
return lands_created
except Exception as e:
print(f" ❌ Error loading lands: {e}")
return 0
def load_rents(csv_path):
"""Load rents data from CSV."""
print("🏠 Loading rents data...")
try:
df = pd.read_csv(csv_path)
print(f" Found {len(df)} rent records")
rents_created = 0
for _, row in df.iterrows():
rent, created = Rent.objects.get_or_create(
rent_number=row['rent_number'],
defaults={
'property_type': row.get('property_type', ''),
'area_en': row.get('area_en', ''),
'zone_en': row.get('zone_en', ''),
'rent_date': pd.to_datetime(row['rent_date']),
'annual_rent': Decimal(str(row['annual_rent'])) if pd.notna(row.get('annual_rent')) else None,
'monthly_rent': Decimal(str(row['monthly_rent'])) if pd.notna(row.get('monthly_rent')) else None,
'property_area': row.get('property_area', 0),
'rent_per_sqft': Decimal(str(row['rent_per_sqft'])) if pd.notna(row.get('rent_per_sqft')) else None,
}
)
if created:
rents_created += 1
print(f" ✅ Created {rents_created} new rents")
return rents_created
except Exception as e:
print(f" ❌ Error loading rents: {e}")
return 0
def load_transactions(csv_path):
"""Load transactions data from CSV."""
print("💼 Loading transactions data...")
try:
df = pd.read_csv(csv_path)
print(f" Found {len(df)} transaction records")
transactions_created = 0
for _, row in df.iterrows():
# Get or create project
project = None
if pd.notna(row.get('project')):
project, _ = Project.objects.get_or_create(
project_number=row['project'],
defaults={'project_name_en': row['project']}
)
transaction, created = Transaction.objects.get_or_create(
transaction_number=row['transaction_number'],
defaults={
'instance_date': pd.to_datetime(row['instance_date']),
'area_en': row.get('area_en', ''),
'zone_en': row.get('zone_en', ''),
'property_type': row.get('property_type', ''),
'transaction_value': Decimal(str(row['transaction_value'])) if pd.notna(row.get('transaction_value')) else None,
'property_area': row.get('property_area', 0),
'price_per_sqft': Decimal(str(row['price_per_sqft'])) if pd.notna(row.get('price_per_sqft')) else None,
'group': row.get('group', ''),
'usage': row.get('usage', ''),
'master_project': row.get('master_project', ''),
'project': project,
}
)
if created:
transactions_created += 1
print(f" ✅ Created {transactions_created} new transactions")
return transactions_created
except Exception as e:
print(f" ❌ Error loading transactions: {e}")
return 0
def create_sample_forecasts():
"""Create sample forecast data."""
print("🔮 Creating sample forecasts...")
try:
# Get some sample areas and property types from transactions
areas = Transaction.objects.values_list('area_en', flat=True).distinct()[:5]
property_types = Transaction.objects.values_list('property_type', flat=True).distinct()[:3]
forecasts_created = 0
for area in areas:
for prop_type in property_types:
if not area or not prop_type:
continue
forecast, created = Forecast.objects.get_or_create(
area_en=area,
property_type=prop_type,
defaults={
'forecast_date': datetime.now().date(),
'predicted_price': Decimal('1000000.00'),
'confidence_interval_lower': Decimal('800000.00'),
'confidence_interval_upper': Decimal('1200000.00'),
'model_version': '1.0',
'accuracy_score': Decimal('0.85'),
'metadata': {'source': 'sample_data', 'model': 'linear_regression'}
}
)
if created:
forecasts_created += 1
print(f" ✅ Created {forecasts_created} sample forecasts")
return forecasts_created
except Exception as e:
print(f" ❌ Error creating forecasts: {e}")
return 0
def setup_rate_limits():
"""Setup default rate limits for different subscription tiers."""
print("⚙️ Setting up rate limits...")
try:
rate_limits = [
{'subscription_type': 'free', 'requests_per_minute': 10, 'requests_per_hour': 100, 'requests_per_day': 1000},
{'subscription_type': 'paid', 'requests_per_minute': 60, 'requests_per_hour': 1000, 'requests_per_day': 10000},
{'subscription_type': 'premium', 'requests_per_minute': 120, 'requests_per_hour': 2000, 'requests_per_day': 20000},
]
created_count = 0
for limit_data in rate_limits:
rate_limit, created = APIRateLimit.objects.get_or_create(
subscription_type=limit_data['subscription_type'],
defaults=limit_data
)
if created:
created_count += 1
print(f" ✅ Created {created_count} rate limit configurations")
return created_count
except Exception as e:
print(f" ❌ Error setting up rate limits: {e}")
return 0
def main():
"""Main function to load all CSV data."""
print("=" * 60)
print(" Dubai Analytics Platform - CSV Data Loader")
print("=" * 60)
print()
# Check if sample data directory exists
sample_data_dir = "sample data"
if not os.path.exists(sample_data_dir):
print(f"❌ Sample data directory '{sample_data_dir}' not found!")
print(" Please ensure the CSV files are in the 'sample data' directory.")
return
# Track total records created
total_created = 0
# Load each CSV file
csv_files = [
('brokers.csv', load_brokers),
('lands.csv', load_lands),
('projects.csv', load_projects),
('rents.csv', load_rents),
('transactions.csv', load_transactions),
('valuations.csv', load_valuations),
]
for csv_file, load_function in csv_files:
csv_path = os.path.join(sample_data_dir, csv_file)
if os.path.exists(csv_path):
created = load_function(csv_path)
total_created += created
else:
print(f"⚠️ File {csv_file} not found, skipping...")
print()
# Create sample forecasts
forecasts_created = create_sample_forecasts()
total_created += forecasts_created
print()
# Setup rate limits
rate_limits_created = setup_rate_limits()
print()
# Summary
print("=" * 60)
print(" Data Loading Summary")
print("=" * 60)
print(f"📊 Total records created: {total_created}")
print(f"⚙️ Rate limits configured: {rate_limits_created}")
print()
print("✅ Data loading completed successfully!")
print()
print("Next steps:")
print("1. Access Django Admin: http://localhost:8000/admin/")
print("2. Login with: admin@dubai-analytics.com / admin123")
print("3. View the loaded data in the admin interface")
print("4. Test the API endpoints with the sample data")
if __name__ == '__main__':
main()