DriverTrac/venv/lib/python3.12/site-packages/jax/_src/dispatch.py

700 lines
27 KiB
Python

# Copyright 2018 The JAX Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Primitive dispatch and jit dispatch.
from __future__ import annotations
import atexit
from collections.abc import Sequence
import dataclasses
from functools import partial
import itertools
import logging
import threading
import time
from typing import Any
from jax._src import api
from jax._src import array
from jax._src import basearray
from jax._src import config
from jax._src import core
from jax._src import dtypes
from jax._src import literals
from jax._src import pjit
from jax._src import traceback_util
from jax._src import util
from jax._src import xla_bridge
from jax._src.abstract_arrays import array_types
from jax._src.interpreters import ad
from jax._src.interpreters import batching
from jax._src.interpreters import mlir
from jax._src.interpreters import partial_eval
from jax._src.interpreters import pxla
from jax._src.api_util import InternalFloatingPointError
from jax._src.layout import Layout, Format
from jax._src.lib import xla_client as xc
from jax._src.mesh import AbstractMesh, Mesh
from jax._src.monitoring import record_scalar, record_event_duration_secs, record_event_time_span
from jax._src.partition_spec import PartitionSpec
from jax._src.sharding import Sharding
from jax._src.sharding_impls import (
NamedSharding, SingleDeviceSharding, GSPMDSharding,
is_single_device_sharding)
from jax._src.stages import SourceInfo
import numpy as np
JAXPR_TRACE_EVENT = "/jax/core/compile/jaxpr_trace_duration"
JAXPR_TO_MLIR_MODULE_EVENT = "/jax/core/compile/jaxpr_to_mlir_module_duration"
BACKEND_COMPILE_EVENT = "/jax/core/compile/backend_compile_duration"
traceback_util.register_exclusion(__file__)
xe = xc._xla
Backend = xe.Client
Device = xc.Device
ArrayCopySemantics = xc.ArrayCopySemantics
CompileOptions = xc.CompileOptions
map, unsafe_map = util.safe_map, map
zip, unsafe_zip = util.safe_zip, zip
logger = logging.getLogger(__name__)
# This flag is set on exit; no logging should be attempted
_on_exit = False
### op-by-op execution
def apply_primitive(prim, *args, **params):
"""Impl rule that compiles and runs a single primitive 'prim' using XLA."""
fun = xla_primitive_callable(prim, **params)
# TODO(yashkatariya): Investigate adding is_primitive to jit and never
# triggering the disable jit path instead of messing around with it here.
prev = config.disable_jit.swap_local(False)
try:
outs = fun(*args)
finally:
config.disable_jit.set_local(prev)
return outs
# TODO(necula): this cache will contain strong references to all
# Jaxprs in `params` (for higher-order primitives).
# This is not immediately fixable by using
# util.multi_weakref_lru_cache, because the `params` (including the Jaxpr)
# are closed over in the `prim_fun` lambda. Leaving this fix for a later PR.
@util.cache()
def xla_primitive_callable(prim: core.Primitive, **params):
util.test_event("xla_primitive_callable_cache_miss")
def prim_fun(*args):
with config.eager_constant_folding(False):
return prim.bind(*args, **params)
prim_fun.__name__ = prim.name
prim_fun.__qualname__ = prim.name
prim_fun._apply_primitive = True
return api.jit(prim_fun)
def simple_impl(prim):
prim.def_impl(partial(apply_primitive, prim))
RuntimeToken = Any
class RuntimeTokenSet(threading.local):
"""See docstring for effects.py module for the calling convention for tokens."""
# For each ordered effect, the token returned by the last dispatched
# computation, sharded over the devices in that computation.
current_tokens: dict[core.Effect, core.Token]
# For each device, the runtime token returned by the last dispatched
# computation on that device.
output_runtime_tokens: dict[Device, RuntimeToken]
def __init__(self):
self.current_tokens = {}
self.output_runtime_tokens = {}
def get_token_input(
self, eff: core.Effect, devices: list[Device]
) -> core.Token:
tok = self.current_tokens.get(eff, np.zeros(0, np.bool_))
if isinstance(tok, core.Token):
# The order of devices may change, so we need to reshard if necessary.
# TODO(yueshengys): This might still be buggy in a multi-process SPMD
# scenario. Revise the logic later. A distributed shutdown barrier inside
# the XLA program may be needed.
return api.device_put(
tok, NamedSharding(Mesh(devices, 'x'), PartitionSpec('x')))
# We only use replicated sharding for the first time when the token for the
# order effect hasn't been created.
s = GSPMDSharding.get_replicated(devices)
sharded_tok = core.Token(
pxla.shard_args(
[s], [None], [xc.ArrayCopySemantics.REUSE_INPUT], [tok]
)[0]
)
self.current_tokens[eff] = sharded_tok
return sharded_tok
def set_token_result(self, eff: core.Effect, token: core.Token):
self.current_tokens[eff] = token
def set_output_runtime_token(self, device: Device, token: RuntimeToken):
# We're free to clobber the previous output token because on each
# device we have a total ordering of computations. Only the token
# from the latest computation matters.
self.output_runtime_tokens[device] = token
def clear(self):
self.current_tokens = {}
self.output_runtime_tokens = {}
def block_until_ready(self):
for token in self.current_tokens.values():
token.block_until_ready()
for token in self.output_runtime_tokens.values():
token.block_until_ready()
self.clear()
runtime_tokens: RuntimeTokenSet = RuntimeTokenSet()
@atexit.register
def wait_for_tokens():
runtime_tokens.block_until_ready()
class LogElapsedTimeContextManager:
__slots__ = ['fmt', 'fun_name', 'event', 'start_time']
def __init__(self, fmt: str, fun_name: str, event: str | None = None):
self.fmt = fmt
self.fun_name = fun_name
self.event = event
def __enter__(self):
self.start_time = time.time()
if self.event is not None:
record_scalar(
self.event, self.start_time, fun_name=self.fun_name
)
def __exit__(self, exc_type, exc_value, traceback):
if _on_exit:
return
end_time = time.time()
elapsed_time = end_time - self.start_time
log_priority = logging.WARNING if config.log_compiles.value else logging.DEBUG
if logger.isEnabledFor(log_priority):
logger.log(log_priority, self.fmt.format(
fun_name=self.fun_name, elapsed_time=elapsed_time))
if self.event is not None:
record_event_duration_secs(
self.event, elapsed_time, fun_name=self.fun_name
)
record_event_time_span(
self.event, self.start_time, end_time, fun_name=self.fun_name
)
log_elapsed_time = LogElapsedTimeContextManager
def should_tuple_args(num_args: int, platform: str) -> bool:
# CPU and GPU do not need tuples as they use host-side data structures that
# do not have small bounds.
# TPU only needs a tuple for very long lists
if platform == "tpu":
return num_args > 2000
else:
return False
def jaxpr_has_primitive(jaxpr: core.Jaxpr, prim_name: str) -> bool:
"""Whether there is a primitive given by user anywhere inside a Jaxpr."""
for eqn in jaxpr.eqns:
if prim_name in eqn.primitive.name:
return True
for subjaxpr in core.subjaxprs(jaxpr):
if jaxpr_has_primitive(subjaxpr, prim_name):
return True
return False
# Use this registry with caution. It will void the guarantee that lowering to
# stablehlo is oblivious of physical devices.
prim_requires_devices_during_lowering: set[core.Primitive] = set()
@util.weakref_lru_cache
def jaxpr_has_prim_requiring_devices(jaxpr: core.Jaxpr) -> bool:
for eqn in jaxpr.eqns:
if eqn.primitive in prim_requires_devices_during_lowering:
return True
for subjaxpr in core.subjaxprs(jaxpr):
if jaxpr_has_prim_requiring_devices(subjaxpr):
return True
return False
@util.weakref_lru_cache
def get_intermediate_shardings(
jaxpr: core.Jaxpr) -> Sequence[tuple[Sharding, SourceInfo]]:
from jax._src import shard_map # pytype: disable=import-error
out = []
for eqn in jaxpr.eqns:
if eqn.primitive is pjit.sharding_constraint_p:
s = eqn.params['sharding']
if isinstance(s, NamedSharding) and isinstance(s.mesh, AbstractMesh):
continue
source_info = SourceInfo(eqn.source_info, eqn.primitive.name)
out.append((s, source_info))
elif eqn.primitive is pjit.jit_p:
source_info = SourceInfo(eqn.source_info, eqn.primitive.name)
out.extend((i, source_info) for i in eqn.params['in_shardings'])
out.extend((o, source_info) for o in eqn.params['out_shardings'])
elif eqn.primitive is shard_map.shard_map_p:
mesh = eqn.params['mesh']
if isinstance(mesh, AbstractMesh):
continue
source_info = SourceInfo(eqn.source_info, eqn.primitive.name)
out.extend((NamedSharding(mesh, spec), source_info)
for spec in [*eqn.params['in_specs'], *eqn.params['out_specs']])
elif eqn.primitive is device_put_p:
source_info = SourceInfo(eqn.source_info, eqn.primitive.name)
out.extend((s, source_info) for s in eqn.params['devices']
if isinstance(s, Sharding) and s.memory_kind is not None)
for subjaxpr in core.subjaxprs(jaxpr):
out.extend(get_intermediate_shardings(subjaxpr))
return out
def jaxpr_has_bints(jaxpr: core.Jaxpr) -> bool:
return (any(type(v.aval.dtype) is core.bint for v in jaxpr.invars
if isinstance(v.aval, core.UnshapedArray)) or
any(_is_bint_axis_size(d)
for j in itertools.chain([jaxpr], core.subjaxprs(jaxpr))
for e in j.eqns for v in e.outvars
if isinstance(v.aval, core.DShapedArray) for d in v.aval.shape))
def _is_bint_axis_size(d: core.AxisSize) -> bool:
if isinstance(d, core.DArray):
assert not d.shape
return type(d.dtype) is core.bint
elif isinstance(d, core.Var):
return (isinstance(d.aval, core.DShapedArray) and
type(d.aval.dtype) is core.bint)
return False
def check_arg(arg: Any):
if not (isinstance(arg, core.Tracer) or core.valid_jaxtype(arg)):
raise TypeError(f"Argument '{arg}' of type {type(arg)} is not a valid "
"JAX type.")
def needs_check_special() -> bool:
return config.debug_infs.value or config.debug_nans.value
def check_special(name: str, bufs: Sequence[basearray.Array]) -> None:
if needs_check_special():
for buf in bufs:
_check_special(name, buf.dtype, buf)
def _check_special(name: str, dtype: np.dtype, buf: basearray.Array) -> None:
if dtypes.issubdtype(dtype, np.inexact):
if config.debug_nans.value and np.any(np.isnan(np.asarray(buf))):
raise InternalFloatingPointError(name, "nan")
if config.debug_infs.value and np.any(np.isinf(np.asarray(buf))):
raise InternalFloatingPointError(name, "inf")
def _identity_fn(x):
return x
def _different_device_order_reshard(
x: array.ArrayImpl, target_sharding: NamedSharding, copy: ArrayCopySemantics
) -> array.ArrayImpl:
x._check_if_deleted()
inp_sharding = x.sharding
assert isinstance(inp_sharding, NamedSharding)
donate_argnums = 0 if copy == ArrayCopySemantics.DONATE_INPUT else None
if inp_sharding._device_assignment == target_sharding._device_assignment:
return api.jit(_identity_fn, out_shardings=target_sharding,
donate_argnums=donate_argnums)(x)
if inp_sharding.is_fully_replicated:
permute_order = None
else:
permute_order = np.vectorize(target_sharding._device_assignment.index,
otypes=[int])(inp_sharding._device_assignment)
new_mesh = Mesh(
target_sharding.mesh.devices.reshape(inp_sharding.mesh.axis_sizes),
inp_sharding.mesh.axis_names)
new_s = NamedSharding(
new_mesh, inp_sharding.spec, memory_kind=target_sharding.memory_kind,
_logical_device_ids=(None if permute_order is None else
tuple(permute_order.tolist())))
new_x = xc.reorder_shards(x, new_s, ArrayCopySemantics.REUSE_INPUT) # type: ignore
return api.jit(_identity_fn, out_shardings=target_sharding,
donate_argnums=donate_argnums)(new_x)
@util.cache(max_size=2048, trace_context_in_key=False)
def _is_supported_cross_host_transfer(ndim, src_sharding, dst_sharding):
"""Returns True if src->dst is a supported cross-host transfer."""
if (src_sharding._internal_device_list.device_kind !=
dst_sharding._internal_device_list.device_kind):
return False
if (src_sharding._to_xla_hlo_sharding(ndim) !=
dst_sharding._to_xla_hlo_sharding(ndim)):
return False
# This check excludes the case where the source and destination shardings
# have the same process index sets but there are shards that require
# cross-host transfers. This case is supportable but expensive to check for.
different_process_inds = (
src_sharding._internal_device_list.process_indices !=
dst_sharding._internal_device_list.process_indices)
backend = xla_bridge.get_backend()
# If a cross-host device transfer is requested but the backend does not
# support it, then the user must set the flags to enable DCN-based transfers.
if (different_process_inds and
not getattr(backend, 'supports_cross_host_transfers', False) and
not xla_bridge.CROSS_HOST_TRANSFER_SOCKET_ADDRESS.value):
raise ValueError(
f"The backend ({backend.platform}, {backend.platform_version}) does "
"not support cross-host device transfers via ICI/NCCL. Please set "
"jax_cross_host_transfer_socket_address and (optionally) "
"jax_cross_host_transport_addresses flags to enable DCN-based cross "
"host device transfers.")
return different_process_inds
@dataclasses.dataclass(frozen=True)
class _DeferredShardArg:
"""Deferred call to `pxla.shard_args`.
Per-array impls return this object instead of a result array to indicate a
deferred `shard_args` call. `_batched_device_put_impl` then batches all
`_DeferredShardArg` objects into a single `shard_args` call.
"""
x: Any
s: Sharding
aval: core.AbstractValue
committed: bool
copy_semantics: ArrayCopySemantics
def result_handler(self, shard_arg_result):
return pxla.global_aval_to_result_handler(
self.aval, self.s, self.committed)(shard_arg_result)
def _device_put_sharding_impl(
x: Any,
aval: core.ShapedArray,
device: Device | Sharding | None,
copy: ArrayCopySemantics,
):
from jax.experimental import multihost_utils # pytype: disable=import-error
if isinstance(x, array.ArrayImpl):
x_is_jax_array = True
x_is_fully_addressable, x_sharding = x.is_fully_addressable, x.sharding
else:
x_is_jax_array = False
x_is_fully_addressable, x_sharding = None, None
if isinstance(device, Sharding):
s = device
s_is_fully_addressable = s.is_fully_addressable
if (getattr(x, 'sharding', None) == s and getattr(x, '_committed', False)
and copy == ArrayCopySemantics.REUSE_INPUT):
return x
if (not s_is_fully_addressable and
x_is_jax_array and not x_is_fully_addressable and
s.device_set == x_sharding.device_set):
assert isinstance(s, NamedSharding), s
return _different_device_order_reshard(x, s, copy)
if (s_is_fully_addressable and x_is_jax_array and
x_is_fully_addressable and s.num_devices > 1 and
s._internal_device_list != x_sharding._internal_device_list and # pytype: disable=attribute-error
s.device_set == x_sharding.device_set):
assert isinstance(s, NamedSharding), s
return _different_device_order_reshard(x, s, copy)
if (x_is_jax_array and x._committed and xla_bridge.process_count() > 1
and _is_supported_cross_host_transfer(x.ndim, x_sharding, s)):
return xc.batched_copy_array_to_devices_with_sharding(
[x], [s._internal_device_list], [s], # pytype: disable=attribute-error
[copy])[0]
if not s_is_fully_addressable:
# If both the source and target shardings are not fully addressable and
# one of the above conditions has not been met, then assume that the user
# is attempting a different device order reshard.
if (x_is_jax_array and not x_is_fully_addressable
and s.device_set != x_sharding.device_set):
inp_ids = [d.id for d in x_sharding._device_assignment]
inp_plat = x_sharding._device_assignment[0].platform.upper()
target_ids = [d.id for d in s._device_assignment]
target_plat = s._device_assignment[0].platform.upper()
raise ValueError(
"For a cross-host reshard in multi-controller JAX, input and target"
" sharding should have the same set of devices. Got input's device"
f" set ids: {inp_ids} on platform {inp_plat} and target sharding's"
f" device set ids: {target_ids} on platform {target_plat}.\n\n"
"There is experimental support for cross-host transfers with "
"different device sets, when input/output shardings have the same "
"indices and layouts, in the TFRT TPU runtime only.")
if ((x_is_jax_array and not x._committed) or
type(x) in array_types or type(x) in dtypes.python_scalar_types):
# If all hosts participate in the sharding, assert that the input is the
# same on all hosts. If some hosts have no addressable devices in the
# sharding, bypass the check, since we can't easily distinguish between
# these two cases: (1) the sharding contains the same subset of global
# devices on all hosts (and hosts with no addressable devices in the
# sharding do not transfer data) or (2) the sharding contains a
# different subset of devices on each host. For (1), the input should be
# the same on all hosts, but for (2) it need not be.
if xla_bridge.process_count() == len(s._internal_device_list.process_indices): # pytype: disable=attribute-error
multihost_utils.assert_equal(
x, fail_message=(
f"{type(x)} passed to device_put is not the same on each"
" process. Make sure you are passing the same value of"
f" {type(x)} on each process."))
return _DeferredShardArg(x, s, aval, True, copy)
# TODO(yashkatariya,mattjj): Link to a doc about McJAX and jax.Array.
raise ValueError(
"device_put's second argument must be a Device or a Sharding which"
f" represents addressable devices, but got {s}. Please pass device or"
" Sharding which represents addressable devices.")
return _DeferredShardArg(x, s, aval, True, copy)
# Only `Device` exists below. `Sharding` instance is handled above.
if x_is_jax_array:
if not x_is_fully_addressable:
raise ValueError(
"device_put's first argument must be a fully addressable array, but "
f"got value with devices {x.devices()}")
if device is None:
if copy == ArrayCopySemantics.REUSE_INPUT:
return x
else:
return _DeferredShardArg(x, x_sharding, aval, x.committed, copy)
elif is_single_device_sharding(x_sharding):
device = x_sharding._device_assignment[0] if device is None else device
if copy == ArrayCopySemantics.ALWAYS_COPY:
return xc.batched_device_put(aval, SingleDeviceSharding(device), [x],
[device], True, True)
return pxla.batched_device_put(aval, SingleDeviceSharding(device), [x],
[device])
sh = SingleDeviceSharding(pxla.get_default_device()
if device is None else device)
return _DeferredShardArg(x, sh, aval, device is not None, copy)
def _device_put_impl(
x, *, device: Device | Sharding | Format | None,
src: Device | Sharding | Format | None, copy: ArrayCopySemantics, aval):
if aval is None:
try:
aval = core.abstractify(x)
aval = update_dp_aval(aval, device)
except TypeError as err:
raise TypeError(
f"Argument '{x}' of type {type(x)} is not a valid JAX type") from err
if isinstance(device, core.MemorySpace):
return apply_primitive(device_put_p, x, devices=(device,), srcs=(src,),
copy_semantics=(copy,))[0]
if isinstance(device, Format):
l = device
dll = l.layout
x_dll = x.format.layout if hasattr(x, 'format') else None
if dll is None and l.sharding is None:
return _device_put_sharding_impl(x, aval, l.sharding, copy)
if (not isinstance(l.sharding, Sharding) or
not isinstance(dll, (Layout, type(None)))):
raise ValueError(
"sharding and layout in `Layout` instance should be"
f" concrete. Got layout: {l} for input {aval.str_short()}")
if (getattr(x, 'format', None) == l and getattr(x, '_committed', False) and
copy == ArrayCopySemantics.REUSE_INPUT):
return x
if x_dll is None and dll is None:
return _device_put_sharding_impl(x, aval, l.sharding, copy)
return api.jit(
_identity_fn,
out_shardings=l,
donate_argnums=(0 if copy == ArrayCopySemantics.DONATE_INPUT else None),
)(x)
return _device_put_sharding_impl(x, aval, device, copy)
def _batched_device_put_impl(
*xs,
devices: Sequence[Device | Sharding | Format | None],
srcs: Sequence[Device | Sharding | Format | None],
copy_semantics: Sequence[ArrayCopySemantics],
dst_avals: Sequence[core.ShapedArray | None]):
ys = []
dsa_indices, dsa_xs, dsa_shardings, dsa_copy_semantics = [], [], [], []
for i, (x, device, src, cp, aval) in enumerate(
zip(xs, devices, srcs, copy_semantics, dst_avals)):
y = _device_put_impl(x, device=device, src=src, copy=cp, aval=aval)
if isinstance(y, _DeferredShardArg):
dsa_indices.append(i)
dsa_xs.append(y.x)
dsa_shardings.append(y.s)
dsa_copy_semantics.append(y.copy_semantics)
ys.append(y)
if dsa_xs:
# Batch shard_arg calls. Helps improve efficiency for backends that support
# efficient batch transfer.
# device_put handles `Format` via a different path, so just pass `None` as
# the layout here.
shard_arg_results = pxla.shard_args(dsa_shardings, [None] * len(dsa_xs),
dsa_copy_semantics, dsa_xs)
for i, shard_arg_result in zip(dsa_indices, shard_arg_results):
assert isinstance(ys[i], _DeferredShardArg)
ys[i] = ys[i].result_handler(shard_arg_result)
return ys
def batched_device_put_impl(
*xs,
devices: Sequence[Device | Sharding | Format | None],
srcs: Sequence[Device | Sharding | Format | None],
copy_semantics: Sequence[ArrayCopySemantics]):
return _batched_device_put_impl(
*xs, devices=devices, srcs=srcs, copy_semantics=copy_semantics,
dst_avals=[None] * len(devices))
device_put_p = core.Primitive('device_put')
device_put_p.multiple_results = True
device_put_p.def_impl(batched_device_put_impl)
def _device_put_folding_rule(consts, params, out_avals):
# We elide device_puts that do nothing; these can be generated by jnp.array,
# for example.
if (all(x is None for x in params["devices"])
and all(isinstance(x, literals.TypedNdArray) for x in consts)
and all(x == ArrayCopySemantics.REUSE_INPUT for x in params["copy_semantics"])):
return consts
return None
partial_eval.const_fold_rules[device_put_p] = _device_put_folding_rule
def update_dp_aval(aval, d):
if not isinstance(aval, core.ShapedArray):
return aval
if isinstance(d, Sharding):
aval = (aval.update(sharding=aval.sharding.update(mesh=d.mesh.abstract_mesh))
if isinstance(d, NamedSharding) else aval.update(sharding=None))
if d.memory_kind is not None:
aval = aval.update(memory_space=core.mem_kind_to_space(d.memory_kind))
return aval
elif isinstance(d, core.MemorySpace):
return aval.update(memory_space=d)
return aval
def _device_put_abstract_eval(*xs, devices, srcs, copy_semantics):
return [update_dp_aval(x, d) for x, d in zip(xs, devices)]
device_put_p.def_abstract_eval(_device_put_abstract_eval)
def _device_put_transpose(cts, *_, devices, srcs, copy_semantics):
results = [None] * len(cts)
dp_args = []
for i, (ct, device, src, cp) in enumerate(zip(cts, devices, srcs, copy_semantics)):
if type(ct) is not ad.Zero:
dp_args.append((i, ct, device, src, cp))
if dp_args:
indices, args, devices, srcs, copy_semantics = list(zip(*dp_args))
new_copy_semantics = []
for cp in copy_semantics:
if cp == ArrayCopySemantics.DONATE_INPUT:
raise ValueError(
"donate=True is not allowed during tranposition of device_put."
" Please file an issue if you want this to be supported.")
elif cp == ArrayCopySemantics.REUSE_INPUT:
new_copy_semantics.append(ArrayCopySemantics.ALWAYS_COPY)
else:
assert cp == ArrayCopySemantics.ALWAYS_COPY
new_copy_semantics.append(ArrayCopySemantics.ALWAYS_COPY)
ys = device_put_p.bind(*args, devices=srcs, srcs=devices,
copy_semantics=tuple(new_copy_semantics))
for i, y in zip(indices, ys):
results[i] = y
return results
ad.primitive_jvps[device_put_p] = partial(ad.linear_jvp, device_put_p)
ad.primitive_transposes[device_put_p] = _device_put_transpose
def _device_put_batcher(batched_args, batch_dims, **params):
mapped_batch_dims = [bd for bd in batch_dims if bd is not batching.not_mapped]
assert not mapped_batch_dims or all(
mapped_batch_dims[0] == bd for bd in mapped_batch_dims[1:]
), batch_dims
return device_put_p.bind(*batched_args, **params), batch_dims
batching.primitive_batchers[device_put_p] = _device_put_batcher
def _tpu_gpu_device_put_lowering(ctx, *xs, devices, srcs, copy_semantics):
# TODO(yashkatariya): Maybe we should add the custom calls anyways if it's
# being used inside jit? Atleast for now, this preserves the old behavior.
if ctx.module_context.all_default_mem_kind:
return xs
def lower(x, device, aval, out_aval):
if ((isinstance(device, Sharding) and device.memory_kind is not None) or
isinstance(device, core.MemorySpace)):
if isinstance(device, Sharding):
if config.use_shardy_partitioner.value:
x = mlir.wrap_with_sharding_op(
ctx, x, out_aval,
device._to_sdy_sharding(aval.ndim))
else:
x = mlir.wrap_with_sharding_op(
ctx, x, out_aval,
device._to_xla_hlo_sharding(aval.ndim).to_proto())
mem_kind = (core.mem_space_to_kind(device)
if isinstance(device, core.MemorySpace) else device.memory_kind)
x = mlir.wrap_with_memory_kind(x, mem_kind, out_aval)
return x
return x
return list(map(lower, xs, devices, ctx.avals_in, ctx.avals_out))
mlir.register_lowering(
device_put_p, _tpu_gpu_device_put_lowering, platform='tpu')
mlir.register_lowering(
device_put_p, _tpu_gpu_device_put_lowering, platform='gpu')
def _common_device_put_lowering(ctx, *xs, devices, srcs, copy_semantics):
return xs
mlir.register_lowering(device_put_p, _common_device_put_lowering)