11 KiB
11 KiB
Enhanced CKG/TKG System
Overview
The Enhanced Component Knowledge Graph (CKG) and Template Knowledge Graph (TKG) system provides intelligent, AI-powered tech stack recommendations based on template features, permutations, and combinations. This robust system leverages Neo4j graph database and Claude AI to deliver comprehensive technology recommendations.
Key Features
🧠 Intelligent Analysis
- AI-Powered Recommendations: Uses Claude AI for intelligent tech stack analysis
- Context-Aware Analysis: Considers template type, category, and complexity
- Confidence Scoring: Provides confidence scores for all recommendations
- Reasoning: Explains why specific technologies are recommended
🔄 Advanced Permutations & Combinations
- Feature Permutations: Ordered sequences of features with performance metrics
- Feature Combinations: Unordered sets of features with synergy analysis
- Compatibility Analysis: Detects feature dependencies and conflicts
- Performance Scoring: Calculates performance and compatibility scores
🔗 Rich Relationships
- Technology Synergies: Identifies technologies that work well together
- Technology Conflicts: Detects incompatible technology combinations
- Feature Dependencies: Maps feature dependency relationships
- Feature Conflicts: Identifies conflicting feature combinations
📊 Comprehensive Analytics
- Performance Metrics: Tracks performance scores across permutations
- Synergy Analysis: Measures feature and technology synergies
- Usage Statistics: Monitors usage patterns and success rates
- Confidence Tracking: Tracks recommendation confidence over time
Architecture
Enhanced CKG (Component Knowledge Graph)
Template → Features → Permutations/Combinations → TechStacks → Technologies
↓ ↓ ↓ ↓ ↓
Metadata Dependencies Performance AI Analysis Synergies
↓ ↓ ↓ ↓ ↓
Conflicts Relationships Scoring Reasoning Conflicts
Enhanced TKG (Template Knowledge Graph)
Template → Features → Technologies → TechStacks
↓ ↓ ↓ ↓
Metadata Dependencies Synergies AI Analysis
↓ ↓ ↓ ↓
Success Conflicts Conflicts Reasoning
API Endpoints
Enhanced CKG APIs
Template-Based Recommendations
GET /api/enhanced-ckg-tech-stack/template/:templateId
- Purpose: Get intelligent tech stack recommendations based on template
- Parameters:
include_features: Include feature details (boolean)limit: Maximum recommendations (number)min_confidence: Minimum confidence threshold (number)
Permutation-Based Recommendations
GET /api/enhanced-ckg-tech-stack/permutations/:templateId
- Purpose: Get tech stack recommendations based on feature permutations
- Parameters:
min_sequence: Minimum sequence length (number)max_sequence: Maximum sequence length (number)limit: Maximum recommendations (number)min_confidence: Minimum confidence threshold (number)
Combination-Based Recommendations
GET /api/enhanced-ckg-tech-stack/combinations/:templateId
- Purpose: Get tech stack recommendations based on feature combinations
- Parameters:
min_set_size: Minimum set size (number)max_set_size: Maximum set size (number)limit: Maximum recommendations (number)min_confidence: Minimum confidence threshold (number)
Feature Compatibility Analysis
POST /api/enhanced-ckg-tech-stack/analyze-compatibility
- Purpose: Analyze feature compatibility and generate recommendations
- Body:
{ "featureIds": ["id1", "id2", "id3"] }
Technology Relationships
GET /api/enhanced-ckg-tech-stack/synergies?technologies=React,Node.js,PostgreSQL
GET /api/enhanced-ckg-tech-stack/conflicts?technologies=Vue.js,Angular
Comprehensive Recommendations
GET /api/enhanced-ckg-tech-stack/recommendations/:templateId
System Statistics
GET /api/enhanced-ckg-tech-stack/stats
Health Check
GET /api/enhanced-ckg-tech-stack/health
Usage Examples
1. Get Intelligent Template Recommendations
const response = await axios.get('/api/enhanced-ckg-tech-stack/template/123', {
params: {
include_features: true,
limit: 10,
min_confidence: 0.8
}
});
console.log('Tech Stack Analysis:', response.data.data.tech_stack_analysis);
console.log('Frontend Technologies:', response.data.data.tech_stack_analysis.frontend_tech);
console.log('Backend Technologies:', response.data.data.tech_stack_analysis.backend_tech);
2. Analyze Feature Compatibility
const response = await axios.post('/api/enhanced-ckg-tech-stack/analyze-compatibility', {
featureIds: ['auth', 'payment', 'dashboard']
});
console.log('Compatible Features:', response.data.data.compatible_features);
console.log('Dependencies:', response.data.data.dependencies);
console.log('Conflicts:', response.data.data.conflicts);
3. Get Technology Synergies
const response = await axios.get('/api/enhanced-ckg-tech-stack/synergies', {
params: {
technologies: 'React,Node.js,PostgreSQL,Docker',
limit: 20
}
});
console.log('Synergies:', response.data.data.synergies);
console.log('Conflicts:', response.data.data.conflicts);
4. Get Comprehensive Recommendations
const response = await axios.get('/api/enhanced-ckg-tech-stack/recommendations/123');
console.log('Best Approach:', response.data.data.summary.best_approach);
console.log('Template Confidence:', response.data.data.summary.template_confidence);
console.log('Permutations:', response.data.data.recommendations.permutation_based);
console.log('Combinations:', response.data.data.recommendations.combination_based);
Configuration
Environment Variables
# Neo4j Configuration
NEO4J_URI=bolt://localhost:7687
NEO4J_USERNAME=neo4j
NEO4J_PASSWORD=password
# CKG-specific Neo4j (optional, falls back to NEO4J_*)
CKG_NEO4J_URI=bolt://localhost:7687
CKG_NEO4J_USERNAME=neo4j
CKG_NEO4J_PASSWORD=password
# Claude AI Configuration
CLAUDE_API_KEY=your-claude-api-key
# Database Configuration
DB_HOST=localhost
DB_PORT=5432
DB_NAME=template_manager
DB_USER=postgres
DB_PASSWORD=password
Neo4j Database Setup
- Install Neo4j: Download and install Neo4j Community Edition
- Start Neo4j: Start the Neo4j service
- Create Database: Create a new database for the CKG/TKG system
- Configure Access: Set up authentication and access controls
Testing
Run Test Suite
# Run comprehensive test suite
node test-enhanced-ckg-tkg.js
# Run demonstration
node -e "require('./test-enhanced-ckg-tkg.js').demonstrateEnhancedSystem()"
Test Coverage
The test suite covers:
- ✅ Health checks for all services
- ✅ Template-based intelligent recommendations
- ✅ Permutation-based recommendations
- ✅ Combination-based recommendations
- ✅ Feature compatibility analysis
- ✅ Technology synergy detection
- ✅ Technology conflict detection
- ✅ Comprehensive recommendation engine
- ✅ System statistics and monitoring
Performance Optimization
Caching
- Analysis Caching: Intelligent tech stack analysis results are cached
- Cache Management: Automatic cache size management and cleanup
- Cache Statistics: Monitor cache performance and hit rates
Database Optimization
- Indexing: Proper indexing on frequently queried properties
- Connection Pooling: Efficient Neo4j connection management
- Query Optimization: Optimized Cypher queries for better performance
AI Optimization
- Batch Processing: Process multiple analyses in batches
- Timeout Management: Proper timeout handling for AI requests
- Fallback Mechanisms: Graceful fallback when AI services are unavailable
Monitoring
Health Monitoring
- Service Health: Monitor all service endpoints
- Database Health: Monitor Neo4j and PostgreSQL connections
- AI Service Health: Monitor Claude AI service availability
Performance Metrics
- Response Times: Track API response times
- Cache Performance: Monitor cache hit rates and performance
- AI Analysis Time: Track AI analysis processing times
- Database Performance: Monitor query performance and optimization
Statistics Tracking
- Usage Statistics: Track template and feature usage
- Recommendation Success: Monitor recommendation success rates
- Confidence Scores: Track recommendation confidence over time
- Error Rates: Monitor and track error rates
Troubleshooting
Common Issues
-
Neo4j Connection Failed
- Check Neo4j service status
- Verify connection credentials
- Ensure Neo4j is running on correct port
-
AI Analysis Timeout
- Check Claude API key validity
- Verify network connectivity
- Review request timeout settings
-
Low Recommendation Confidence
- Check feature data quality
- Verify template completeness
- Review AI analysis parameters
-
Performance Issues
- Check database indexing
- Monitor cache performance
- Review query optimization
Debug Commands
# Check Neo4j status
docker ps | grep neo4j
# View Neo4j logs
docker logs neo4j-container
# Test Neo4j connection
cypher-shell -u neo4j -p password "RETURN 1"
# Check service health
curl http://localhost:8009/api/enhanced-ckg-tech-stack/health
# Get system statistics
curl http://localhost:8009/api/enhanced-ckg-tech-stack/stats
Future Enhancements
Planned Features
- Real-time Learning: Continuous learning from user feedback
- Advanced Analytics: Deeper insights into technology trends
- Visualization: Graph visualization for relationships
- API Versioning: Support for multiple API versions
- Rate Limiting: Advanced rate limiting and throttling
Research Areas
- Machine Learning: Integration with ML models for better predictions
- Graph Neural Networks: Advanced graph-based recommendation systems
- Federated Learning: Distributed learning across multiple instances
- Quantum Computing: Exploration of quantum algorithms for optimization
Support
For issues or questions:
- Check the logs for error messages
- Verify Neo4j and PostgreSQL connections
- Review system statistics and health
- Test with single template analysis first
- Check Claude AI service availability
Contributing
- Follow the existing code structure and patterns
- Add comprehensive tests for new features
- Update documentation for API changes
- Ensure backward compatibility
- Follow the established error handling patterns